Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(20): e0115222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173189

RESUMO

Bats are recognized as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically nonpathogenic in bats, raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here, we characterize the tetherin genes from 27 bat species, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, more than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals. IMPORTANCE Bats are an important host of various viruses which are deadly to humans and other mammals but do not cause outward signs of illness in bats. Furthering our understanding of the unique features of the immune system of bats will shed light on how they tolerate viral infections, potentially informing novel antiviral strategies in humans and other animals. This study examines the antiviral protein tetherin, which prevents viral particles from escaping their host cell. Analysis of tetherin from 27 bat species reveals that it is under strong evolutionary pressure, and we show that multiple bat species have evolved to possess more tetherin genes than other mammals, some of which encode structurally unique tetherins capable of activity against different viral particles. These data suggest that bat tetherin plays a potentially broad and important role in the management of viral infections in bats.


Assuntos
Quirópteros , Viroses , Vírus , Humanos , Animais , Antígeno 2 do Estroma da Médula Óssea/genética , Antivirais , Receptores Toll-Like
2.
NPJ Vaccines ; 6(1): 67, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972565

RESUMO

Vaccines against SARS-CoV-2 are likely to be critical in the management of the ongoing pandemic. A number of candidates are in Phase III human clinical trials, including ChAdOx1 nCoV-19 (AZD1222), a replication-deficient chimpanzee adenovirus-vectored vaccine candidate. In preclinical trials, the efficacy of ChAdOx1 nCoV-19 against SARS-CoV-2 challenge was evaluated in a ferret model of infection. Groups of ferrets received either prime-only or prime-boost administration of ChAdOx1 nCoV-19 via the intramuscular or intranasal route. All ChAdOx1 nCoV-19 administration combinations resulted in significant reductions in viral loads in nasal-wash and oral swab samples. No vaccine-associated adverse events were observed associated with the ChAdOx1 nCoV-19 candidate, with the data from this study suggesting it could be an effective and safe vaccine against COVID-19. Our study also indicates the potential for intranasal administration as a way to further improve the efficacy of this leading vaccine candidate.

3.
Proc Natl Acad Sci U S A ; 117(17): 9529-9536, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284399

RESUMO

Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.


Assuntos
Quirópteros/virologia , Gammaretrovirus/isolamento & purificação , Animais , Austrália , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Phascolarctidae/virologia
4.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931675

RESUMO

Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis.IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection.


Assuntos
Perfilação da Expressão Gênica , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Fator de Transcrição AP-1/metabolismo , Animais , Linhagem Celular , Quirópteros , Ebolavirus/patogenicidade , Genes fos , Genes jun , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Rim/citologia , Rim/virologia , Fosforilação , Suínos , Fator de Transcrição AP-1/genética , Proteínas Virais , Replicação Viral
5.
Sci Rep ; 6: 21256, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876644

RESUMO

Bats are natural hosts to numerous viruses and have ancient origins, having diverged from other eutherian mammals early in evolution. These characteristics place them in an important position to provide insights into the evolution of the mammalian immune system and antiviral immunity. We describe the first detailed partial map of a bat (Pteropus alecto) MHC-I region with comparative analysis of the MHC-I region and genes. The bat MHC-I region is highly condensed, yet relatively conserved in organisation, and is unusual in that MHC-I genes are present within only one of the three highly conserved class I duplication blocks. We hypothesise that MHC-I genes first originated in the ß duplication block, and subsequently duplicated in a step-wise manner across the MHC-I region during mammalian evolution. Furthermore, bat MHC-I genes contain unique insertions within their peptide-binding grooves potentially affecting the peptide repertoire presented to T cells, which may have implications for the ability of bats to control infection without overt disease.


Assuntos
Quirópteros/genética , Sequência Conservada/genética , Evolução Molecular , Genes MHC Classe I/imunologia , Animais , Quirópteros/imunologia , Sequência Conservada/imunologia , Genoma , Humanos , Mamíferos/imunologia , Anotação de Sequência Molecular , Peptídeos/genética , Peptídeos/imunologia , Ligação Proteica/genética
6.
J Gen Virol ; 97(3): 581-592, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26703878

RESUMO

IFN-antagonist function is a major determinant of pathogenicity and cross-species infection by viruses, but remains poorly defined for many potentially zoonotic viruses resident in animal species. The paramyxovirus family contains several zoonotic viruses, including highly pathogenic viruses such as Nipah virus and Hendra virus, and an increasing number of largely uncharacterized animal viruses. Here, we report the characterization of IFN antagonism by the rodent viruses J virus (JPV) and Beilong virus (BeiPV) of the proposed genus Jeilongvirus of the paramyxoviruses. Infection of cells by JPV and BeiPV was found to inhibit IFN-activated nuclear translocation of signal transducer and activator of transcription 1 (STAT1). However, in contrast to most other paramyxoviruses, the JPV and BeiPV V proteins did not interact with or inhibit signalling by STAT1 or STAT2, suggesting that JPV/BeiPV use an atypical V protein-independent strategy to target STATs, consistent with their inclusion in a separate genus. Nevertheless, the V proteins of both viruses interacted with melanoma differentiation-associated protein 5 (MDA5) and robustly inhibited MDA5-dependent activation of the IFN-ß promoter. This supports a growing body of evidence that MDA5 is a universal target of paramyxovirus V proteins, such that the V-MDA5 interaction represents a potential target for broad-spectrum antiviral approaches.


Assuntos
Evasão da Resposta Imune , Infecções por Paramyxoviridae/imunologia , Paramyxovirinae/imunologia , Proteínas Virais/imunologia , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon , Interferon-alfa/genética , Interferon-alfa/imunologia , Infecções por Paramyxoviridae/genética , Infecções por Paramyxoviridae/virologia , Paramyxovirinae/classificação , Paramyxovirinae/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/imunologia , Transdução de Sinais , Proteínas Virais/genética
7.
Genome Biol ; 15(11): 532, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25398248

RESUMO

BACKGROUND: Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). RESULTS: The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. CONCLUSIONS: This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis.


Assuntos
Vírus Hendra/genética , Infecções por Henipavirus/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Transcriptoma/genética , Animais , Apoptose/genética , Quirópteros/genética , Quirópteros/virologia , Vírus Hendra/patogenicidade , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteômica , Replicação Viral/genética
8.
Virology ; 441(2): 95-106, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23562481

RESUMO

Viral emergence as a result of zoonotic transmission constitutes a continuous public health threat. Emerging viruses such as SARS coronavirus, hantaviruses and henipaviruses have wildlife reservoirs. Characterising the viruses of candidate reservoir species in geographical hot spots for viral emergence is a sensible approach to develop tools to predict, prevent, or contain emergence events. Here, we explore the viruses of Eidolon helvum, an Old World fruit bat species widely distributed in Africa that lives in close proximity to humans. We identified a great abundance and diversity of novel herpes and papillomaviruses, described the isolation of a novel adenovirus, and detected, for the first time, sequences of a chiropteran poxvirus closely related with Molluscum contagiosum. In sum, E. helvum display a wide variety of mammalian viruses, some of them genetically similar to known human pathogens, highlighting the possibility of zoonotic transmission.


Assuntos
Biodiversidade , Quirópteros/virologia , Metagenoma , Vírus/classificação , Vírus/genética , África , Animais , Análise por Conglomerados , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
9.
Retrovirology ; 10: 35, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23537098

RESUMO

BACKGROUND: Betaretroviruses infect a wide range of species including primates, rodents, ruminants, and marsupials. They exist in both endogenous and exogenous forms and are implicated in animal diseases such as lung cancer in sheep, and in human disease, with members of the human endogenous retrovirus-K (HERV-K) group of endogenous betaretroviruses (ßERVs) associated with human cancers and autoimmune diseases. To improve our understanding of betaretroviruses in an evolutionarily distinct host species, we characterized ßERVs present in the genomes and transcriptomes of mega- and microbats, which are an important reservoir of emerging viruses. RESULTS: A diverse range of full-length ßERVs were discovered in mega- and microbat genomes and transcriptomes including the first identified intact endogenous retrovirus in a bat. Our analysis revealed that the genus Betaretrovirus can be divided into eight distinct sub-groups with evidence of cross-species transmission. Betaretroviruses are revealed to be a complex retrovirus group, within which one sub-group has evolved from complex to simple genomic organization through the acquisition of an env gene from the genus Gammaretrovirus. Molecular dating suggests that bats have contended with betaretroviral infections for over 30 million years. CONCLUSIONS: Our study reveals that a diverse range of betaretroviruses have circulated in bats for most of their evolutionary history, and cluster with extant betaretroviruses of divergent mammalian lineages suggesting that their distribution may be largely unrestricted by host species barriers. The presence of ßERVs with the ability to transcribe active viral elements in a major animal reservoir for viral pathogens has potential implications for public health.


Assuntos
Betaretrovirus/isolamento & purificação , Retrovirus Endógenos/isolamento & purificação , Animais , Betaretrovirus/classificação , Betaretrovirus/genética , Quirópteros , Análise por Conglomerados , DNA Viral/genética , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Evolução Molecular , Filogenia , Análise de Sequência de DNA
10.
J Gen Virol ; 93(Pt 9): 2037-2045, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22694899

RESUMO

A previous phylogenetic study suggested that mammalian gammaretroviruses may have originated in bats. Here we report the discovery of RNA transcripts from two putative endogenous gammaretroviruses in frugivorous (Rousettus leschenaultii retrovirus, RlRV) and insectivorous (Megaderma lyra retrovirus, MlRV) bat species. Both genomes possess a large deletion in pol, indicating that they are defective retroviruses. Phylogenetic analysis places RlRV and MlRV within the diversity of mammalian gammaretroviruses, with the former falling closer to porcine endogenous retroviruses and the latter to Mus dunni endogenous virus, koala retrovirus and gibbon ape leukemia virus. Additional genomic mining suggests that both microbat (Myotis lucifugus) and megabat (Pteropus vampyrus) genomes harbour many copies of endogenous retroviral forms related to RlRV and MlRV. Furthermore, phylogenetic analysis reveals the presence of three genetically diverse groups of endogenous gammaretroviruses in bat genomes, with M. lucifugus possessing members of all three groups. Taken together, this study indicates that bats harbour distinct gammaretroviruses and may have played an important role as reservoir hosts during the diversification of mammalian gammaretroviruses.


Assuntos
Quirópteros/virologia , Retrovirus Endógenos/isolamento & purificação , Gammaretrovirus/isolamento & purificação , Animais , Biodiversidade , Quirópteros/classificação , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Evolução Molecular , Gammaretrovirus/classificação , Gammaretrovirus/genética , Camundongos , Dados de Sequência Molecular , Filogenia
11.
J Virol ; 86(8): 4288-93, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22318134

RESUMO

Gammaretroviruses infect a wide range of vertebrate species where they are associated with leukemias, neurological diseases and immunodeficiencies. However, the origin of these infectious agents is unknown. Through a phylogenetic analysis of viral gene sequences, we show that bats harbor an especially diverse set of gammaretroviruses. In particular, phylogenetic analysis places Rhinolophus ferrumequinum retrovirus (RfRV), a new gammaretrovirus identified by de novo analysis of the Rhinolophus ferrumequinum transcriptome, and six other gammaretroviruses from different bat species, as basal to other mammalian gammaretroviruses. An analysis of the similarity in the phylogenetic history between the gammaretroviruses and their bat hosts provided evidence for both host-virus codivergence and cross-species transmission. Taken together, these data provide new insights into the origin of the mammalian gammaretroviruses.


Assuntos
Quirópteros/virologia , Gammaretrovirus/genética , Animais , Evolução Molecular , Gammaretrovirus/classificação , Ordem dos Genes , Produtos do Gene gag/genética , Produtos do Gene pol/genética , Genoma Viral , Dados de Sequência Molecular , Filogenia , Transcriptoma
12.
PLoS One ; 4(12): e8266, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20011515

RESUMO

BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto) were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular Transformada/citologia , Quirópteros , Animais , Forma Celular/efeitos dos fármacos , Clonagem Molecular , Vírus Hendra/efeitos dos fármacos , Vírus Hendra/fisiologia , Infecções por Henipavirus/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Interferons/genética , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/fisiologia , Poli I-C/farmacologia , Vírus 40 dos Símios/genética
13.
Protein Expr Purif ; 55(2): 262-72, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17709258

RESUMO

Moraxella bovis is the causative agent of infectious bovine keratoconjunctivitis (IBK) also known as pinkeye, a highly contagious and painful eye disease that is common in cattle throughout the world. Vaccination appears to be a reasonable and cost-effective means of control of pinkeye. Identification of genes encoding novel secreted antigens have been reported, and these antigens are being assessed for use in a vaccine. One of the genes encodes phospholipase B, which can be expressed with high purity and yield in recombinant Escherichia coli as a secreted, soluble, non-tagged, mature construct (less signal peptide with predicted mass 63 kDa). The recombinant phospholipase B exhibited anomalous electrophoretic mobility that was dependent on the temperature of the denaturing process, with bands observed at either 52 or 63 kDa. Analysis by in-gel digestion and liquid chromatography-mass spectrometry revealed these two distinct forms most likely had identical sequences. Phospholipase B is a compact, globular protein with a predicted structure typical of a conventional autotransporter. It is suggested that high temperature is required to unfold the protein (to denature the beta-barrel-rich transporter domain) and to ensure accessibility of the reducing agent. Interestingly, the two forms of the enzyme, differing in size and isoelectric points, were also detected in cell-free supernatants of M. bovis cultures, indicating that native phospholipase B may exist in two differentially folded states possibly also differing in oxidation status of cysteine residues.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Lisofosfolipase/genética , Moraxella bovis/enzimologia , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Lisofosfolipase/isolamento & purificação , Lisofosfolipase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
14.
Vaccine ; 21(21-22): 2900-5, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12798633

RESUMO

DNA vaccines have great potential but despite the promise shown in rodent models, responses in large animals, including humans, have been disappointing. Furthermore, gene gun delivery of DNA has been used to improve these responses. However, most cells that are transfected are not the professional antigen presenting cells (APC) which are critical for generating the primary immune response. Here, we show that in the large animal model of the pig, the combination of the use of gene gun delivery and a DNA vector that targets antigen presenting cells by expressing a CTLA4-ovalbumin (OVA) fusion antigen, leads to enhanced ovalbumin specific serum IgG, IgA, IgG1 and IgG2 immune responses.


Assuntos
Antígenos de Diferenciação/genética , Antígeno B7-1/imunologia , Biolística , Ovalbumina/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas de DNA/administração & dosagem , Animais , Antígenos CD , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/imunologia , Células COS , Antígeno CTLA-4 , Chlorocebus aethiops , Citomegalovirus/genética , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Modelos Biológicos , Ovalbumina/biossíntese , Ovalbumina/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Suínos , Fatores de Tempo , Transfecção , Vacinas de DNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA