RESUMO
Liver fibrosis (LF) is a major cause of morbidity and mortality worldwide. Hepatic stellate cells (HSCs) are the primary source of extracellular matrix in the liver and their activation is a central event in LF development. Extracellular vesicles (EVs) are intercellular communication agents, which play important roles in physiological processes in chronic liver diseases. The aim of this study was to examine the crosstalk between hepatocytes and HSCs mediated by hepatocyte-secreted EVs. EVs were purified from primary mouse hepatocytes, HepG2 cell lines, under normal or stressed conditions. The effect of EVs on primary HSCs (pHSCs) differentiation was evaluated by measuring of differentiation markers. In addition, their impact on the carbon tetrachloride (CCl4)-induced fibrosis mouse model was evaluated. The results demonstrated that HepG2-EVs regulate HSC differentiation and that under stress conditions, promoted pHSCs differentiation into the myofibroblast phenotype. The evaluation of miRNA sequences in the HepG2 secreted EVs demonstrated high levels of miR-423-5p. The examination of EV cargo following stress conditions identified a significant reduction of miR-423-5p in HepG2-EVs relative to HepG2-EVs under normal conditions. In addition, pHSCs transfected with miR-423-5p mimic and exhibit lower mRNA levels of alpha smooth muscle actin and Collagen type 1 alpha, and the mRNA expression level of genes targeted the family with sequence-similarity-3 (FAM3) and Monoacylglycerol lipase (Mgll). This study strengthened the hypothesis that EVs are involved in LF and that their cargo changes in stress conditions. In addition, miR-423-5p was shown to be involved in HSCs differentiation and hence, fibrosis development.
Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Humanos , Camundongos , Vesículas Extracelulares/metabolismo , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Vitamin D is a key immune-modulator that plays a role in the innate and adaptive immune systems. Certain pathogens impair the immune defense by downregulating the vitamin D receptor (VDR) pathway. Low serum levels of vitamin D are associated with increased hepatitis B virus (HBV) replication. Our study aimed to assess the in-vitro relationship between HBV production and Vitamin D signaling pathway and to explore the associated mechanism(s). METHODS: HBV transcription and replication was evaluated by qRT-PCR of the HBV-RNA and covalently closed circular DNA (cccDNA). Furthermore, we have transfected the 1.3 X HBV-Luc plasmid to the cells and measured the Luciferase activity using Luminometer. Vitamin D signaling pathway activation was evaluated by measuring the expression levels of VDR, CYP24A1, Tumor necrosis factor α (TNFα) and cathelicidin (CAMP) by qRT-PCR. All assays were performed on HepG2.2.15, HepG2, and HepAD38 cells treated with or without Vitamin D active metabolite: calcitriol. RESULTS: Calcitriol did not suppress HBV transcription, cccDNA expression or HBV RNA levels in HepG2.2.15 cells. However, VDR transcript levels in HepG2.215 cells were significantly lower compared to HepG2 cells. Similar results were obtained in HepAD38 cell where VDR expression was down-regulated when HBV transcript level was up-regulated. In addition, calcitriol induced VDR-associated signaling, resulting in upregulation of CYP24A1, TNFα and CAMP expression level in HepG2 cells but not in the HepG2.2.15 cells. CONCLUSIONS: These findings indicate that VDR expression is downregulated in HBV-transfected cells, thereby preventing vitamin D from inhibiting transcription and translation of HBV in vitro. HBV might use this mechanism to avoid the immunological defense system by affecting both TNFα and CAMP signaling pathways.