Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 477: 1-10, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33984304

RESUMO

Cell extrusion is a morphogenetic process in which unfit or dying cells are eliminated from the tissue at the interface with healthy neighbours in homeostasis. This process is also highly associated with cell fate specification followed by differentiation in development. Spontaneous cell death occurs in development and inhibition of this process can result in abnormal development, suggesting that survival or death is part of cell fate specification during morphogenesis. Moreover, spontaneous somatic mutations in oncogenes or tumour suppressor genes can trigger new morphogenetic events at the interface with healthy cells. Cell competition is considered as the global quality control mechanism for causing unfit cells to be eliminated at the interface with healthy neighbours in proliferating tissues. In this review, I will discuss variations of cell extrusion that are coordinated by unfit cells and healthy neighbours in relation to the geometry and topology of the tissue in development and cell competition.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Forma Celular , Animais , Apoptose/fisiologia , Fenômenos Biomecânicos , Competição entre as Células , Homeostase , Humanos , Células-Tronco/fisiologia
2.
Curr Biol ; 30(4): 670-681.e6, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32004455

RESUMO

When oncogenic transformation or apoptosis occurs within epithelia, the harmful or dead cells are apically extruded from tissues to maintain epithelial homeostasis. However, the underlying molecular mechanism still remains elusive. In this study, we first show, using mammalian cultured epithelial cells and zebrafish embryos, that prior to apical extrusion of RasV12-transformed cells, calcium wave occurs from the transformed cell and propagates across the surrounding cells. The calcium wave then triggers and facilitates the process of extrusion. IP3 receptor, gap junction, and mechanosensitive calcium channel TRPC1 are involved in calcium wave. Calcium wave induces the polarized movement of the surrounding cells toward the extruding transformed cells. Furthermore, calcium wave facilitates apical extrusion, at least partly, by inducing actin rearrangement in the surrounding cells. Moreover, comparable calcium propagation also promotes apical extrusion of apoptotic cells. Thus, calcium wave is an evolutionarily conserved, general regulatory mechanism of cell extrusion.


Assuntos
Sinalização do Cálcio/fisiologia , Transformação Celular Neoplásica/metabolismo , Animais , Cães , Embrião não Mamífero , Células Madin Darby de Rim Canino , Peixe-Zebra
3.
Nat Commun ; 9(1): 4695, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410020

RESUMO

At the initial stage of carcinogenesis single mutated cells appear within an epithelium. Mammalian in vitro experiments show that potentially cancerous cells undergo live apical extrusion from normal monolayers. However, the mechanism underlying this process in vivo remains poorly understood. Mosaic expression of the oncogene vSrc in a simple epithelium of the early zebrafish embryo results in extrusion of transformed cells. Here we find that during extrusion components of the cytokinetic ring are recruited to adherens junctions of transformed cells, forming a misoriented pseudo-cytokinetic ring. As the ring constricts, it separates the basal from the apical part of the cell releasing both from the epithelium. This process requires cell cycle progression and occurs immediately after vSrc-transformed cell enters mitosis. To achieve extrusion, vSrc coordinates cell cycle progression, junctional integrity, cell survival and apicobasal polarity. Without vSrc, modulating these cellular processes reconstitutes vSrc-like extrusion, confirming their sufficiency for this process.


Assuntos
Epitélio/metabolismo , Mitose , Peixe-Zebra/metabolismo , Quinases da Família src/metabolismo , Junções Aderentes/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular Transformada , Polaridade Celular , Sobrevivência Celular , Citocinese , Cães , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Ativação Enzimática , Células Madin Darby de Rim Canino , Fosforilação
4.
Nat Commun ; 8: 15431, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580937

RESUMO

The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo.


Assuntos
Padronização Corporal , Movimento Celular , Peixes/embriologia , Morfogênese , Animais , Blástula/metabolismo , Caderinas/metabolismo , Adesão Celular , Embrião não Mamífero , Desenvolvimento Embrionário , Células Epiteliais/citologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Masculino , Microinjeções , Microscopia Confocal , RNA Mensageiro/metabolismo , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 114(12): E2327-E2336, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270608

RESUMO

Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.


Assuntos
Endocitose , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Epitélio/embriologia , Epitélio/metabolismo , Transdução de Sinais , Transformação Genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas rab5 de Ligação ao GTP/genética
6.
J Vis Exp ; (96)2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25741625

RESUMO

Here we describe a method to conditionally induce epithelial cell transformation by the use of the 4-Hydroxytamoxifen (4-OHT) inducible KalTA4-ERT2/UAS expression system(1) in zebrafish larvae, and the subsequent live imaging of innate immune cell interaction with HRASG12V expressing skin cells. The KalTA4-ERT2/UAS system is both inducible and reversible which allows us to induce cell transformation with precise temporal/spatial resolution in vivo. This provides us with a unique opportunity to live image how individual preneoplastic cells interact with host tissues as soon as they emerge, then follow their progression as well as regression. Recent studies in zebrafish larvae have shown a trophic function of innate immunity in the earliest stages of tumorigenesis(2,3). Our inducible system would allow us to live image the onset of cellular transformation and the subsequent host response, which may lead to important insights on the underlying mechanisms for the regulation of oncogenic trophic inflammatory responses. We also discuss how one might adapt our protocol to achieve temporal and spatial control of ectopic gene expression in any tissue of interest.


Assuntos
Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Engenharia Genética/métodos , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/patologia , Pele/imunologia , Pele/patologia , Animais , Animais Geneticamente Modificados , Comunicação Celular/fisiologia , Transformação Celular Neoplásica/genética , DNA/administração & dosagem , DNA/genética , Imunidade Inata , Larva/fisiologia , Microinjeções , Plasmídeos/administração & dosagem , Plasmídeos/genética , Lesões Pré-Cancerosas/genética , Fenômenos Fisiológicos da Pele/genética , Fenômenos Fisiológicos da Pele/imunologia , Transgenes , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
Nat Commun ; 5: 4428, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25079702

RESUMO

Recent studies have shown that certain types of transformed cells are extruded from an epithelial monolayer. However, it is not known whether and how neighbouring normal cells play an active role in this process. In this study, we demonstrate that filamin A and vimentin accumulate in normal cells specifically at the interface with Src- or RasV12-transformed cells. Knockdown of filamin A or vimentin in normal cells profoundly suppresses apical extrusion of the neighbouring transformed cells. In addition, we show in zebrafish embryos that filamin plays a positive role in the elimination of the transformed cells. Furthermore, the Rho/Rho kinase pathway regulates filamin accumulation and filamin acts upstream of vimentin in the apical extrusion. This is the first report demonstrating that normal epithelial cells recognize and actively eliminate neighbouring transformed cells and that filamin is a key mediator in the interaction between normal and transformed epithelial cells.


Assuntos
Filaminas/genética , Regulação da Expressão Gênica , Vimentina/genética , Peixe-Zebra/genética , Animais , Morte Celular , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cães , Embrião não Mamífero , Filaminas/antagonistas & inibidores , Filaminas/metabolismo , Células Madin Darby de Rim Canino , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transformação Genética , Vimentina/antagonistas & inibidores , Vimentina/metabolismo , Peixe-Zebra/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
8.
EMBO Rep ; 15(2): 175-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24397932

RESUMO

Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite-dependent manner and binds the microtubule-nucleator γ-tubulin complex. hMsd1/SSX2IP depletion leads to disorganised interphase microtubules and misoriented mitotic spindles with reduced length and intensity. Furthermore, hMsd1/SSX2IP is essential for ciliogenesis, and during zebrafish embryogenesis, knockdown of its orthologue results in ciliary defects and disturbs left-right asymmetry. We propose that the Msd1 family comprises conserved microtubule-anchoring proteins.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Fuso Acromático/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Cílios/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
Curr Top Dev Biol ; 101: 77-110, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23140626

RESUMO

Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.


Assuntos
Comunicação Celular , Movimento Celular , Polaridade Celular , Regulação da Expressão Gênica no Desenvolvimento , Animais , Adesão Celular , Divisão Celular , Inibição de Contato , Drosophila/citologia , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Gastrulação , Camundongos , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Via de Sinalização Wnt , Xenopus/embriologia , Xenopus/genética , Xenopus/metabolismo
10.
Environ Health Perspect ; 120(7): 990-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22510978

RESUMO

BACKGROUND: Environmental estrogens alter hormone signaling in the body that can induce reproductive abnormalities in both humans and wildlife. Available testing systems for estrogens are focused on specific systems such as reproduction. Crucially, however, the potential for significant health impacts of environmental estrogen exposures on a variety of body systems may have been overlooked. OBJECTIVE: Our aim was to develop and apply a sensitive transgenic zebrafish model to assess real-time effects of environmental estrogens on signaling mechanisms in a whole body system for use in integrated health assessments. METHODS: We created a novel transgenic biosensor zebrafish containing an estrogen-inducible promoter derived with multiple tandem estrogen responsive elements (EREs) and a Gal4ff-UAS system for enhanced response sensitivity. RESULTS: Using our novel estrogen-responsive transgenic (TG) zebrafish, we identified target tissues for environmental estrogens; these tissues have very high sensitivity even at environmentally relevant concentrations. Exposure of the TG fish to estrogenic endocrine-disrupting chemicals (EDCs) induced specific expression of green fluorescent protein (GFP) in a wide variety of tissues including the liver, heart, skeletal muscle, otic vesicle, forebrain, lateral line, and ganglions, most of which have not been established previously as targets for estrogens in fish. Furthermore, we found that different EDCs induced GFP expression with different tissue response patterns and time trajectories, suggesting different potential health effects. CONCLUSION: We have developed a powerful new model for understanding toxicological effects, mechanisms, and health impacts of environmental estrogens in vertebrates.


Assuntos
Animais Geneticamente Modificados/metabolismo , Técnicas Biossensoriais/métodos , Estrogênios/farmacologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peixe-Zebra/genética
11.
J Cell Sci ; 125(Pt 1): 59-66, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22250205

RESUMO

In Drosophila, normal and transformed cells compete with each other for survival in a process called cell competition. However, it is not known whether comparable phenomena also occur in mammals. Scribble is a tumor suppressor protein in Drosophila and mammals. In this study we examine the interface between normal and Scribble-knockdown epithelial cells using Madin-Darby Canine Kidney (MDCK) cells expressing Scribble short hairpin RNA (shRNA) in a tetracycline-inducible manner. We observe that Scribble-knockdown cells undergo apoptosis and are apically extruded from the epithelium when surrounded by normal cells. Apoptosis does not occur when Scribble-knockdown cells are cultured alone, suggesting that the presence of surrounding normal cells induces the cell death. We also show that death of Scribble-knockdown cells occurs independently of apical extrusion. Finally, we demonstrate that apoptosis of Scribble-knockdown cells depends on activation of p38 mitogen-activated protein kinase (MAPK). This is the first demonstration that an oncogenic transformation within an epithelium induces cell competition in a mammalian cell culture system.


Assuntos
Proteínas de Drosophila , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Animais , Apoptose , Linhagem Celular , Polaridade Celular , Forma Celular , Cães , Ativação Enzimática , Técnicas de Silenciamento de Genes , Proteínas de Membrana/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Dev Cell ; 21(6): 1026-37, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22118769

RESUMO

Collective cell migration is a mode of movement crucial for morphogenesis and cancer metastasis. However, little is known about how migratory cells coordinate collectively. Here we show that mutual cell-cell attraction (named here coattraction) is required to maintain cohesive clusters of migrating mesenchymal cells. Coattraction can counterbalance the natural tendency of cells to disperse via mechanisms such as contact inhibition and epithelial-to-mesenchymal transition. Neural crest cells are coattracted via the complement fragment C3a and its receptor C3aR, revealing an unexpected role of complement proteins in early vertebrate development. Loss of coattraction disrupts collective and coordinated movements of these cells. We propose that coattraction and contact inhibition act in concert to allow cell collectives to self-organize and respond efficiently to external signals, such as chemoattractants and repellents.


Assuntos
Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Complemento C3a/fisiologia , Animais , Adesão Celular/fisiologia , Fatores Quimiotáticos/genética , Fatores Quimiotáticos/fisiologia , Complemento C3a/genética , Transição Epitelial-Mesenquimal/fisiologia , Modelos Neurológicos , Dados de Sequência Molecular , Células-Tronco Multipotentes/fisiologia , Crista Neural/citologia , Crista Neural/embriologia , Células-Tronco Neurais/fisiologia , Receptores de Complemento/genética , Receptores de Complemento/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
13.
J Cell Sci ; 123(Pt 2): 171-80, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026643

RESUMO

At the initial stage of carcinogenesis, transformation occurs in a single cell within an epithelial sheet. However, it remains unknown what happens at the boundary between normal and transformed cells. Using Madin-Darby canine kidney (MDCK) cells transformed with temperature-sensitive v-Src, we have examined the interface between normal and Src-transformed epithelial cells. We show that Src-transformed cells are apically extruded when surrounded by normal cells, but not when Src cells alone are cultured, suggesting that apical extrusion occurs in a cell-context-dependent manner. We also observe apical extrusion of Src-transformed cells in the enveloping layer of zebrafish gastrula embryos. When Src-transformed MDCK cells are surrounded by normal MDCK cells, myosin-II and focal adhesion kinase (FAK) are activated in Src cells, which further activate downstream mitogen-activated protein kinase (MAPK). Importantly, activation of these signalling pathways depends on the presence of surrounding normal cells and plays a crucial role in apical extrusion of Src cells. Collectively, these results indicate that interaction with surrounding normal epithelial cells influences the signalling pathways and behaviour of Src-transformed cells.


Assuntos
Comunicação Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteína Oncogênica pp60(v-src)/metabolismo , Transdução de Sinais , Animais , Caderinas/metabolismo , Adesão Celular , Polaridade Celular , Cães , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Miosina Tipo II/metabolismo , Transporte Proteico , Peixe-Zebra/metabolismo , beta Catenina/metabolismo
14.
Development ; 134(22): 4073-81, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17965052

RESUMO

The Snail genes are implicated in processes that involve cell movement, both during embryonic development and tumour progression. In teleosts, the vertebrate Snail1 gene is represented by two distinct genes, snail1a and snail1b (previously snail1 and snail2). These genes are expressed in complementary mesodermal domains and their combined expression matches that of their mammalian counterpart. By analysing their loss and gain of function, we found that the most-anterior axial mesendodermal cells, the precursors of the polster, move in a cohesive manner directed by the activity of snail1a- and snail1b-expressing cells surrounding these precursors. The cell-autonomous function of Snail1 proteins regulates cell motility and influences the behaviour of Snail-negative neighbouring cells. Snail1a is required by the prechordal plate for it to reach its normal position, whereas Snail1b controls the acquisition of its normal shape. These non-redundant functions of Snail1a and Snail1b in controlling axial mesendoderm migration comply with the duplication-degeneration-complementation model, and indicate that Snail genes not only act as inducers of epithelial-to-mesenchymal transition, but also as more general regulators of cell adhesion and movement.


Assuntos
Padronização Corporal/genética , Movimento Celular/genética , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Adesão Celular/genética , Embrião não Mamífero , Endoderma/embriologia , Mesoderma/embriologia , Modelos Biológicos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Nat Genet ; 39(6): 727-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17468754

RESUMO

Jeune asphyxiating thoracic dystrophy, an autosomal recessive chondrodysplasia, often leads to death in infancy because of a severely constricted thoracic cage and respiratory insufficiency; retinal degeneration, cystic renal disease and polydactyly may be complicating features. We show that IFT80 mutations underlie a subset of Jeune asphyxiating thoracic dystrophy cases, establishing the first association of a defective intraflagellar transport (IFT) protein with human disease. Knockdown of ift80 in zebrafish resulted in cystic kidneys, and knockdown in Tetrahymena thermophila produced shortened or absent cilia.


Assuntos
Asfixia/genética , Doenças do Desenvolvimento Ósseo/genética , Proteínas de Transporte/genética , Doenças Renais Císticas/genética , Mutação/genética , Tetrahymena thermophila/genética , Doenças Torácicas/genética , Peixe-Zebra/genética , Animais , Feminino , Humanos , Recém-Nascido , Masculino , Linhagem , Polidactilia/genética , Tetrahymena thermophila/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento
16.
Nature ; 446(7137): 797-800, 2007 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17392791

RESUMO

The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.


Assuntos
Padronização Corporal , Polaridade Celular , Células Epiteliais/citologia , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Neurônios/citologia , Peixe-Zebra/embriologia , Animais , Proteínas de Transporte/metabolismo , Divisão Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Proteínas de Peixe-Zebra/metabolismo
17.
Nat Genet ; 37(10): 1135-40, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16170314

RESUMO

The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles. Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2). In zebrafish, the augmented phenotype results from enhanced defective convergent extension movements. We also show that Vangl2 localizes to the basal body and axoneme of ciliated cells, a pattern reminiscent of that of the BBS proteins. These data suggest that cilia are intrinsically involved in PCP processes.


Assuntos
Síndrome de Bardet-Biedl/patologia , Proteínas Associadas aos Microtúbulos/genética , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Síndrome de Bardet-Biedl/genética , Polaridade Celular/genética , Cílios/química , Cóclea/patologia , Células Epiteliais/química , Pálpebras/fisiopatologia , Chaperoninas do Grupo II , Camundongos , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/análise , Defeitos do Tubo Neural/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Development ; 130(17): 4037-46, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12874125

RESUMO

During vertebrate gastrulation, mesodermal and ectodermal cells undergo convergent extension, a process characterised by prominent cellular rearrangements in which polarised cells intercalate along the medio-lateral axis leading to elongation of the antero-posterior axis. Recently, it has become evident that a noncanonical Wnt/Frizzled (Fz)/Dishevelled (Dsh) signalling pathway, which is related to the planar-cell-polarity (PCP) pathway in flies, regulates convergent extension during vertebrate gastrulation. Here we isolate and functionally characterise a zebrafish homologue of Drosophila prickle (pk), a gene that is implicated in the regulation of PCP. Zebrafish pk1 is expressed maternally and in moving mesodermal precursors. Abrogation of Pk1 function by morpholino oligonucleotides leads to defective convergent extension movements, enhances the silberblick (slb)/wnt11 and pipetail (Ppt)/wnt5 phenotypes and suppresses the ability of Wnt11 to rescue the slb phenotype. Gain-of-function of Pk1 also inhibits convergent extension movements and enhances the slb phenotype, most likely caused by the ability of Pk1 to block the Fz7-dependent membrane localisation of Dsh by downregulating levels of Dsh protein. Furthermore, we show that pk1 interacts genetically with trilobite (tri)/strabismus to mediate the caudally directed migration of cranial motor neurons and convergent extension. These results indicate that, during zebrafish gastrulation Pk1 acts, in part, through interaction with the noncanonical Wnt11/Wnt5 pathway to regulate convergent extension cell movements, but is unlikely to simply be a linear component of this pathway. In addition, Pk1 interacts with Tri to mediate posterior migration of branchiomotor neurons, probably independent of the noncanonical Wnt pathway.


Assuntos
Movimento Celular/fisiologia , Gástrula/metabolismo , Neurônios/metabolismo , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas com Domínio LIM , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt
19.
Mech Dev ; 120(4): 467-76, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12676324

RESUMO

Wnt genes play important roles in regulating patterning and morphogenesis during vertebrate gastrulation. In zebrafish, slb/wnt11 is required for convergence and extension movements, but not cell fate specification during gastrulation. To determine if other Wnt genes functionally interact with slb/wnt11, we analysed the role of ppt/wnt5 during zebrafish gastrulation. ppt/wnt5 is maternally provided and zygotically expressed at all stages during gastrulation. The analysis of ppt mutant embryos reveals that Ppt/Wnt5 regulates cell elongation and convergent extension movements in posterior regions of the gastrula, while its function in more anterior regions is largely redundant to that of Slb/Wnt11. Frizzled-2 functions downstream of ppt/wnt5, indicating that it might act as a receptor for Ppt/Wnt5 in this process. The characterisation of the role of Ppt/Wnt5 provides insight into the functional diversity of Wnt genes in regulating vertebrate gastrulation movements.


Assuntos
Gástrula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Linhagem da Célula , Gástrula/metabolismo , Glicoproteínas/genética , Glicoproteínas/fisiologia , Hibridização In Situ , Microscopia Confocal , Mutação , Oligonucleotídeos Antissenso/farmacologia , Fenótipo , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Proteínas Wnt , Proteína Wnt-5a , Peixe-Zebra
20.
Semin Cell Dev Biol ; 13(3): 251-60, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12137734

RESUMO

Members of the Wnt family have been implicated in a variety of developmental processes including axis formation, patterning of the central nervous system and tissue morphogenesis. Recent studies have shown that a Wnt signalling pathway similar to that involved in the establishment of planar cell polarity in Drosophila regulates convergent extension movements during zebrafish and Xenopus gastrulation. This finding provides a good starting point to dissect the complex cell biology and genetic regulation of vertebrate gastrulation movements.


Assuntos
Gástrula/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Xenopus/embriologia , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Cálcio/metabolismo , Glicoproteínas/metabolismo , Ligantes , Modelos Biológicos , Mutação , Fenótipo , Proteínas Wnt , Proteínas de Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA