Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658032

RESUMO

BACKGROUND: While immunotherapy has been highly successful for the treatment of some cancers, for others, the immune response to tumor antigens is weak leading to treatment failure. The resistance of tumors to checkpoint inhibitor therapy may be caused by T cell exhaustion resulting from checkpoint activation. METHODS: In this study, lentiviral vectors that expressed T cell epitopes of an experimentally introduced tumor antigen, ovalbumin, or the endogenous tumor antigen, Trp1 were developed. The vectors coexpressed CD40 ligand (CD40L), which served to mature the dendritic cells (DCs), and a soluble programmed cell death protein 1 (PD-1) microbody to prevent checkpoint activation. Vaccination of mice bearing B16.OVA melanomas with vector-transduced DCs induced the proliferation and activation of functional, antigen-specific, cytolytic CD8 T cells. RESULTS: Vaccination induced the expansion of CD8 T cells that infiltrated the tumors to suppress tumor growth. Vector-encoded CD40L and PD-1 microbody increased the extent of tumor growth suppression. Adoptive transfer demonstrated that the effect was mediated by CD8 T cells. Direct injection of the vector, without the need for ex vivo transduction of DCs, was also effective. CONCLUSIONS: This study suggests that therapeutic vaccination that induces tumor antigen-specific CD8 T cells coupled with a vector-expressed checkpoint inhibitor can be an effective means to suppress the growth of tumors that are resistant to conventional immunotherapy.


Assuntos
Vacinas Anticâncer , Inibidores de Checkpoint Imunológico , Lentivirus , Animais , Camundongos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Lentivirus/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Humanos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Feminino
2.
Proc Natl Acad Sci U S A ; 120(23): e2303509120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252952

RESUMO

Vectored immunoprophylaxis was first developed as a means of establishing engineered immunity to HIV using an adenoassociated viral vector expressing a broadly neutralizing antibody. We applied this concept to establish long-term prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a mouse model using adenoassociated virus and lentiviral vectors expressing a high-affinity angiotensin-converting enzyme 2 (ACE2) decoy. Administration of decoy-expressing (adenoassociated virus) AAV2.retro and AAV6.2 vectors by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and was active against SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective therapeutically when administered postinfection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.


Assuntos
COVID-19 , Animais , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Imunização , Imunoterapia , Vacinação , Dependovirus/genética , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico
3.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711584

RESUMO

Vectored immunoprophylaxis was first developed as a means to establish engineered immunity to HIV through the use of an adeno-associated viral vector expressing a broadly neutralizing antibody. We have applied this concept to establish long-term prophylaxis against SARS-CoV-2 by adeno-associated and lentiviral vectors expressing a high affinity ACE2 decoy receptor. Administration of decoy-expressing AAV vectors based on AAV2.retro and AAV6.2 by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and active against recent SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective when administered up to 24 hours post-infection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.

4.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35972807

RESUMO

Lentiviral vector-based dendritic cell vaccines induce protective T cell responses against viral infection and cancer in animal models. In this study, we tested whether preventative and therapeutic vaccination could be achieved by direct injection of antigen-expressing lentiviral vector, obviating the need for ex vivo transduction of dendritic cells. Injected lentiviral vector preferentially transduced splenic dendritic cells and resulted in long-term expression. Injection of a lentiviral vector encoding an MHC class I-restricted T cell epitope of lymphocytic choriomeningitis virus (LCMV) and CD40 ligand induced an antigen-specific cytolytic CD8+ T lymphocyte response that protected the mice from infection. The injection of chronically infected mice with a lentiviral vector encoding LCMV MHC class I and II T cell epitopes and a soluble programmed cell death 1 microbody rapidly cleared the virus. Vaccination by direct injection of lentiviral vector was more effective in sterile alpha motif and HD-domain containing protein 1-knockout (SAMHD1-knockout) mice, suggesting that lentiviral vectors containing Vpx, a lentiviral protein that increases the efficiency of dendritic cell transduction by inducing the degradation of SAMHD1, would be an effective strategy for the treatment of chronic disease in humans.


Assuntos
Vacinas Virais , Viroses , Animais , Ligante de CD40 , Epitopos de Linfócito T , Vetores Genéticos , Lentivirus , Vírus da Coriomeningite Linfocítica , Camundongos , Proteína 1 com Domínio SAM e Domínio HD , Vacinas Virais/imunologia
5.
Front Immunol ; 13: 797589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350781

RESUMO

The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine effectiveness. Here, neutralizing antibody titers elicited by mRNA-based and adenoviral vector-based vaccines against variant pseudotyped viruses were measured. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals had less neutralizing titer (IC50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest a potential benefit by second immunization following Ad26.COV2.S to increase protection from current and future variants.


Assuntos
COVID-19 , SARS-CoV-2 , Ad26COVS1 , Adenoviridae/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , RNA Mensageiro , SARS-CoV-2/genética
6.
Microbiol Spectr ; 10(1): e0061821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019698

RESUMO

The host transmembrane protein MARCH8 is a RING finger E3 ubiquitin ligase that downregulates various host transmembrane proteins, such as MHC-II. We have recently reported that MARCH8 expression in virus-producing cells impairs viral infectivity by reducing virion incorporation of not only HIV-1 envelope glycoprotein but also vesicular stomatitis virus G-glycoprotein through two different pathways. However, the MARCH8 inhibition spectrum remains largely unknown. Here, we show the antiviral spectrum of MARCH8 using viruses pseudotyped with a variety of viral envelope glycoproteins. Infection experiments revealed that viral envelope glycoproteins derived from the rhabdovirus, arenavirus, coronavirus, and togavirus (alphavirus) families were sensitive to MARCH8-mediated inhibition. Lysine mutations at the cytoplasmic tails of rabies virus-G, lymphocytic choriomeningitis virus glycoproteins, SARS-CoV and SARS-CoV-2 spike proteins, and Chikungunya virus and Ross River virus E2 proteins conferred resistance to MARCH8. Immunofluorescence showed impaired downregulation of the mutants of these viral envelope glycoproteins by MARCH8, followed by lysosomal degradation, suggesting that MARCH8-mediated ubiquitination leads to intracellular degradation of these envelopes. Indeed, rabies virus-G and Chikungunya virus E2 proteins proved to be clearly ubiquitinated. We conclude that MARCH8 has inhibitory activity on a variety of viral envelope glycoproteins whose cytoplasmic lysine residues are targeted by this antiviral factor. IMPORTANCE A member of the MARCH E3 ubiquitin ligase family, MARCH8, downregulates many different kinds of host transmembrane proteins, resulting in the regulation of cellular homeostasis. On the other hands, MARCH8 acts as an antiviral factor when it binds to and downregulates HIV-1 envelope glycoprotein and vesicular stomatitis virus G-glycoprotein that are viral transmembrane proteins. This study reveals that, as in the case of cellular membrane proteins, MARCH8 shows broad-spectrum inhibition against various viral envelope glycoproteins by recognizing their cytoplasmic lysine residues, resulting in lysosomal degradation.


Assuntos
Antivirais/farmacologia , Lisina/efeitos dos fármacos , Ubiquitina-Proteína Ligases/farmacologia , Proteínas do Envelope Viral/química , Western Blotting , Regulação para Baixo , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Lisina/metabolismo , Ubiquitinação/fisiologia , Proteínas do Envelope Viral/efeitos dos fármacos
7.
Cell Rep ; 38(2): 110237, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34982967

RESUMO

Recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants Mu and C.1.2 have spike proteins with mutations that may confer resistance to natural and vaccine-elicited antibodies. Analysis of neutralizing antibody titers in the sera of vaccinated individuals without previous history of infection and from convalescent individuals show partial resistance of the viruses. In contrast, sera from individuals with a previous history of SARS-CoV-2 infection who were subsequently vaccinated neutralize variants with titers 4- to 11-fold higher, providing a rationale for vaccination of individuals with previous infection. The heavily mutated C.1.2 spike is the most antibody neutralization-resistant spike to date; however, the avidity of C.1.2 spike protein for angiotensin-converting enzyme 2 (ACE2) is low. This finding suggests that the virus evolved to escape the humoral response but has a decrease in fitness, suggesting that it may cause milder disease or be less transmissible. It may be difficult for the spike protein to evolve to escape neutralizing antibodies while maintaining high affinity for ACE2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Testes de Neutralização/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos
8.
FEBS J ; 289(13): 3642-3654, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33993615

RESUMO

Membrane-associated RING-CH (MARCH) family member proteins are RING-finger E3 ubiquitin ligases that are known to downregulate cellular transmembrane proteins. MARCH8 is a novel antiviral factor that inhibits HIV-1 envelope glycoprotein and vesicular stomatitis virus G by downregulating these envelope glycoproteins from the cell surface, resulting in their reduced incorporation into virions. More recently, we have found that MARCH8 reduces viral infectivity via two different mechanisms. Additionally, several groups have reported further antiviral or virus-supportive functions of the MARCH8 protein and its other cellular mechanisms. In this review, we summarize the current knowledge about the molecular mechanisms by which MARCH8 can regulate cellular homeostasis and inhibit and occasionally support enveloped virus infection.


Assuntos
Vírion , Vírus , Antivirais/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Envelope Viral/genética , Vírion/metabolismo , Vírus/metabolismo
9.
bioRxiv ; 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34312623

RESUMO

The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine efficacy. Here, neutralizing antibody titers elicited by mRNA-based and an adenoviral vector-based vaccine against variant pseudotyped viruses were compared. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals were of low neutralizing titer (IC 50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest the benefit of a second immunization following Ad26.COV2.S to increase protection against the variants.

10.
Elife ; 92020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778221

RESUMO

Membrane-associated RING-CH 8 (MARCH8) inhibits infection with both HIV-1 and vesicular stomatitis virus G-glycoprotein (VSV-G)-pseudotyped viruses by reducing virion incorporation of envelope glycoproteins. The molecular mechanisms by which MARCH8 targets envelope glycoproteins remain unknown. Here, we show two different mechanisms by which MARCH8 inhibits viral infection. Viruses pseudotyped with the VSV-G mutant, in which cytoplasmic lysine residues were mutated, were insensitive to the inhibitory effect of MARCH8, whereas those with a similar lysine mutant of HIV-1 Env remained sensitive to it. Indeed, the wild-type VSV-G, but not its lysine mutant, was ubiquitinated by MARCH8. Furthermore, the MARCH8 mutant, which had a disrupted cytoplasmic tyrosine motif that is critical for intracellular protein sorting, did not inhibit HIV-1 Env-mediated infection, while it still impaired infection by VSV-G-pseudotyped viruses. Overall, we conclude that MARCH8 reduces viral infectivity by downregulating envelope glycoproteins through two different mechanisms mediated by a ubiquitination-dependent or tyrosine motif-dependent pathway.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Infecções por Rhabdoviridae/virologia , Ubiquitina-Proteína Ligases/genética , Vesiculovirus/fisiologia , Proteínas do Envelope Viral/genética , Células HEK293 , Humanos , Mutação , Ubiquitina-Proteína Ligases/imunologia
11.
Mol Ther ; 28(8): 1795-1805, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32497512

RESUMO

Dendritic cell vaccines are a promising strategy for the treatment of cancer and infectious diseases but have met with mixed success. We report on a lentiviral vector-based dendritic cell vaccine strategy that generates a cluster of differentiation 8 (CD8) T cell response that is much stronger than that achieved by standard peptide-pulsing approaches. The strategy was tested in the mouse lymphocytic choriomeningitis virus (LCMV) model. Bone marrow-derived dendritic cells from SAMHD1 knockout mice were transduced with a lentiviral vector expressing the GP33 major-histocompatibility-complex (MHC)-class-I-restricted peptide epitope and CD40 ligand (CD40L) and injected into wild-type mice. The mice were highly protected against acute and chronic variant CL-13 LCMVs, resulting in a 100-fold greater decrease than that achieved with peptide epitope-pulsed dendritic cells. Inclusion of an MHC-class-II-restricted epitope in the lentiviral vector further increased the CD8 T cell response and resulted in antigen-specific CD8 T cells that exhibited a phenotype associated with functional cytotoxic T cells. The vaccination synergized with checkpoint blockade to reduce the viral load of mice chronically infected with CL-13 to an undetectable level. The strategy improves upon current dendritic cell vaccine strategies; is applicable to the treatment of disease, including AIDS and cancer; and supports the utility of Vpx-containing vectors.


Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Vetores Genéticos , Inibidores de Checkpoint Imunológico/farmacologia , Lentivirus , Vacinas Virais/imunologia , Viroses/prevenção & controle , Animais , Biomarcadores , Células Dendríticas/virologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Antígenos de Histocompatibilidade Classe II , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lentivirus/genética , Coriomeningite Linfocítica/prevenção & controle , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinas Virais/administração & dosagem , Viroses/etiologia , Viroses/imunologia
12.
J Orthop Case Rep ; 10(9): 98-101, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34169027

RESUMO

INTRODUCTION: Two methods using cannulated headless screws can be used for scaphoid fractures: Inserting the screw through the distal fragment and then into the proximal fragment through a palmar approach under direct vision or fluoroscopic guidance and inserting the screw in the proximal-to-distal direction through a dorsal approach with fluoroscopic guidance. These methods are sometimes difficult to use in oblique fractures when trying to achieve screw fixation perpendicular to the fracture plane.The most common mechanism of injury in the scaphoid fracture is forceful wrist hyperextension and punching something. Less commonly, a direct blow to the wrist also can cause a fracture. The mechanism of fracture by a direct blow to the wrist is not completely clear. CASE PRESENTATION: We experienced two rare cases of scaphoid fracture in goalkeepers sustained when they saved a goal by contacting the soccer ball with the palm of their hand. Both fractures were proximal oblique fractures. We performed through a dorsal approach to insert the screws in the distal-to-proximal direction under direct vision assisted with fluoroscopy. Bone union was noted after surgery in both cases. They returned to their occupations without wrist pain.We investigated the relationship between the fracture line and wrist position using a fresh cadaver. The experiment revealed that the fracture line of the scaphoid matched the dorsal edge of the articular surface of the radius with the wrist in 30° of dorsiflexion and 20° of ulnar deviation. CONCLUSION: In this report, we reported rare cases of scaphoid fracture due to contact with the soccer ball on the palm. We propose a surgical approach for an oblique fracture of the proximal scaphoid that used guide wires and screws, but was performed through a dorsal, and not palmar, approach to insert the screws in the distal-to-proximal direction.We presume that coronal shear stress to the scaphoid bone occurred when the palm contacted the ball with the wrist positioned at 30° dorsiflexion and 20° ulnar deviation.

13.
Mol Ther ; 27(5): 960-973, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962161

RESUMO

HIV-1-infected individuals are treated with lifelong antiretroviral drugs to control the infection. A means to strengthen the antiviral T cell response might allow them to control viral loads without antiretroviral drugs. We report the development of a lentiviral vector-based dendritic cell (DC) vaccine in which HIV-1 antigen is co-expressed with CD40 ligand (CD40L) and a soluble, high-affinity programmed cell death 1 (PD-1) dimer. CD40L activates the DCs, whereas PD-1 binds programmed death ligand 1 (PD-L1) to prevent checkpoint activation and strengthen the cytotoxic T lymphocyte (CTL) response. The injection of humanized mice with DCs transduced with vector expressing CD40L and the HIV-1 SL9 epitope induced antigen-specific T cell proliferation and memory differentiation. Upon HIV-1 challenge of vaccinated mice, viral load was suppressed by 2 logs for 6 weeks. Introduction of the soluble PD-1 dimer into a vector that expressed full-length HIV-1 proteins accelerated the antiviral response. The results support development of this approach as a therapeutic vaccine that might allow HIV-1-infected individuals to control virus replication without antiretroviral therapy.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/terapia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Citotóxicos/imunologia , Replicação Viral/imunologia , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/farmacologia , Animais , Ligante de CD40 , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Epitopos de Linfócito T/imunologia , Vetores Genéticos/imunologia , Vetores Genéticos/farmacologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Ativação Linfocitária/imunologia , Camundongos
14.
Nat Med ; 21(12): 1502-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26523972

RESUMO

Membrane-associated RING-CH 8 (MARCH8) is one of 11 members of the recently discovered MARCH family of RING (really interesting new gene)-finger E3 ubiquitin ligases. MARCH8 downregulates several host transmembrane proteins, including major histocompatibility complex (MHC)-II, CD86, interleukin (IL)-1 receptor accessory protein, TNF-related apoptosis-inducing ligand (TRAIL) receptor 1 and the transferrin receptor. However, its physiological roles remain largely unknown. Here we identify MARCH8 as a novel antiviral factor. The ectopic expression of MARCH8 in virus-producing cells does not affect levels of lentivirus production, but it does markedly reduce viral infectivity. MARCH8 blocks the incorporation of HIV-1 envelope glycoprotein into virus particles by downregulating it from the cell surface, probably through their interaction, resulting in a substantial reduction in the efficiency of viral entry. The inhibitory effect of MARCH8 on vesicular stomatitis virus G-glycoprotein is even more remarkable, suggesting a broad-spectrum inhibition of enveloped viruses by MARCH8. Notably, the endogenous expression of MARCH8 is high in monocyte-derived macrophages and dendritic cells, and MARCH8 knockdown or knockout in macrophages significantly increases the infectivity of virions produced by these cells. Our findings thus indicate that MARCH8 is highly expressed in terminally differentiated myeloid cells, and that it is a potent antiviral protein that targets viral envelope glycoproteins and reduces their incorporation into virions.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Glicoproteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo , Inativação Gênica , Células HEK293 , HIV-1/patogenicidade , Humanos , Lentivirus/metabolismo , Macrófagos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução Genética , Ubiquitina-Proteína Ligases/química
15.
Nat Commun ; 6: 8483, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404464

RESUMO

The complement system is important for the host defence against infection as well as for the development of inflammatory diseases. Here we show that C1q/TNF-related protein 6 (CTRP6; gene symbol C1qtnf6) expression is elevated in mouse rheumatoid arthritis (RA) models. C1qtnf6(-/-) mice are highly susceptible to induced arthritis due to enhanced complement activation, whereas C1qtnf6-transgenic mice are refractory. The Arthus reaction and the development of experimental autoimmune encephalomyelitis are also enhanced in C1qtnf6(-/-) mice and C1qtnf6(-/-) embryos are semi-lethal. We find that CTRP6 specifically suppresses the alternative pathway of the complement system by competing with factor B for C3(H2O) binding. Furthermore, treatment of arthritis-induced mice with intra-articular injection of recombinant human CTRP6 cures the arthritis. CTRP6 is expressed in human synoviocytes, and CTRP6 levels are increased in RA patients. These results indicate that CTRP6 is an endogenous complement regulator and could be used for the treatment of complement-mediated diseases.


Assuntos
Adipocinas/imunologia , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Via Alternativa do Complemento/imunologia , Adipocinas/genética , Adulto , Animais , Artrite Experimental/genética , Artrite Experimental/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Reação de Arthus/genética , Reação de Arthus/imunologia , Reação de Arthus/metabolismo , Western Blotting , Colágeno/imunologia , Colágeno/metabolismo , Convertases de Complemento C3-C5/imunologia , Complemento C3a/imunologia , Complemento C5a/imunologia , Via Alternativa do Complemento/genética , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunoprecipitação , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo
16.
J Virol ; 89(9): 4992-5001, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25717111

RESUMO

UNLABELLED: HIV-1-infected individuals who control viremia to below the limit of detection without antiviral therapy have been termed elite controllers (EC). Functional attenuation of some HIV-1 proteins has been reported in EC. The HIV-1 accessory protein Vif (virion infectivity factor) enhances viral infectivity through anti-retroviral factor apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G) degradation; however, little is known regarding Vif function in EC. Here, the anti-APOBEC3G activities of clonal, plasma HIV RNA-derived Vif sequences from 46 EC, 46 noncontrollers (NC), and 44 individuals with acute infection (AI) were compared. Vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped viruses were generated by cotransfecting 293T cells with expression plasmids encoding patient-derived Vif, human APOBEC3G, VSV-G, and a vif/env-deficient luciferase-reporter HIV-1 proviral DNA clone. Viral stocks were used to infect 293T cells, and Vif anti-APOBEC3G activity was quantified in terms of luciferase signal. On average, the anti-APOBEC3G activities of EC-derived Vif sequences (median log10 relative light units [RLU], 4.54 [interquartile range {IQR}, 4.30 to 4.66]) were significantly lower than those of sequences derived from NC (4.75 [4.60 to 4.92], P < 0.0001) and AI (4.74 [4.62 to 4.94], P < 0.0001). Reduced Vif activities were not associated with particular HLA class I alleles expressed by the host. Vif functional motifs were highly conserved in all patient groups. No single viral polymorphism could explain the reduced anti-APOBEC3G activity of EC-derived Vif, suggesting that various combinations of minor polymorphisms may underlie these effects. These results further support the idea of relative attenuation of viral protein function in EC-derived HIV sequences. IMPORTANCE: HIV-1 elite controllers (EC) are rare individuals who are able to control plasma viremia to undetectable levels without antiretroviral therapy. Understanding the pathogenesis and mechanisms underpinning this rare phenotype may provide important insights for HIV vaccine design. The EC phenotype is associated with beneficial host immunogenetic factors (such as HLA-B*57) as well as with functions of attenuated viral proteins (e.g., Gag, Pol, and Nef). In this study, we demonstrated that HIV-1 Vif sequences isolated from EC display relative impairments in their ability to counteract the APOBEC3G host restriction factor compared to Vif sequences from normal progressors and acutely infected individuals. This result extends the growing body of evidence demonstrating attenuated HIV-1 protein function in EC and, in particular, supports the idea of the relevance of viral factors in contributing to this rare HIV-1 phenotype.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G , Linhagem Celular , Perfilação da Expressão Gênica , Genes Reporter , Vetores Genéticos , Humanos , Luciferases/análise , Luciferases/genética , Dados de Sequência Molecular , Polimorfismo Genético , RNA Viral/genética , Análise de Sequência de DNA , Vesiculovirus/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA