Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 13(1): 240-253, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862756

RESUMO

BACKGROUND: Sarcopenia is the age-related loss of muscle mass, strength, and function. Epigenetic processes such as DNA methylation, which integrate both genetic and environmental exposures, have been suggested to contribute to the development of sarcopenia. This study aimed to determine whether differences in the muscle methylome are associated with sarcopenia and its component measures: grip strength, appendicular lean mass index (ALMi), and gait speed. METHODS: Using the Infinium Human MethylationEPIC BeadChip, we measured DNA methylation in vastus lateralis muscle biopsies of 83 male participants (12 with sarcopenia) with a mean (standard deviation) age of 75.7 (3.6) years from the Hertfordshire Sarcopenia Study (HSS) and Hertfordshire Sarcopenia Study extension (HSSe) and examined associations with sarcopenia and its components. Pathway, histone mark, and transcription factor enrichment of the differentially methylated CpGs (dmCpGs) were determined, and sodium bisulfite pyrosequencing was used to validate the sarcopenia-associated dmCpGs. Human primary myoblasts (n = 6) isolated from vastus lateralis muscle biopsies from male individuals from HSSe were treated with the EZH2 inhibitor GSK343 to assess how perturbations in epigenetic processes may impact myoblast differentiation and fusion, measured by PAX7 and MYHC immunocytochemistry, and mitochondrial bioenergetics determined using the Seahorse XF96. RESULTS: Sarcopenia was associated with differential methylation at 176 dmCpGs (false discovery rate ≤ 0.05) and 141 differentially methylated regions (Stouffer ≤ 0.05). The sarcopenia-associated dmCpGs were enriched in genes associated with myotube fusion (P = 1.40E-03), oxidative phosphorylation (P = 2.78E-02), and voltage-gated calcium channels (P = 1.59E-04). ALMi was associated with 71 dmCpGs, grip strength with 49 dmCpGs, and gait speed with 23 dmCpGs (false discovery rate ≤ 0.05). There was significant overlap between the dmCpGs associated with sarcopenia and ALMi (P = 3.4E-35), sarcopenia and gait speed (P = 4.78E-03), and sarcopenia and grip strength (P = 7.55E-06). There was also an over-representation of the sarcopenia, ALMi, grip strength, and gait speed-associated dmCpGs with sites of H3K27 trimethylation (all P ≤ 0.05) and amongst EZH2 target genes (all P ≤ 0.05). Furthermore, treatment of human primary myoblasts with the EZH2 inhibitor GSK343 inhibitor led to an increase in PAX7 expression (P ≤ 0.05), decreased myotube fusion (P = 0.043), and an increase in ATP production (P = 0.008), with alterations in the DNA methylation of genes involved in oxidative phosphorylation and myogenesis. CONCLUSIONS: These findings show that differences in the muscle methylome are associated with sarcopenia and individual measures of muscle mass, strength, and function in older individuals. This suggests that changes in the epigenetic regulation of genes may contribute to impaired muscle function in later life.


Assuntos
Epigenoma , Sarcopenia , Idoso , Metilação de DNA , Epigênese Genética , Força da Mão/fisiologia , Humanos , Masculino , Sarcopenia/genética
2.
Circ Res ; 127(8): 1056-1073, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32673519

RESUMO

RATIONALE: Intercellular tight junctions are crucial for correct regulation of the endothelial barrier. Their composition and integrity are affected in pathological contexts, such as inflammation and tumor growth. JAM-A (junctional adhesion molecule A) is a transmembrane component of tight junctions with a role in maintenance of endothelial barrier function, although how this is accomplished remains elusive. OBJECTIVE: We aimed to understand the molecular mechanisms through which JAM-A expression regulates tight junction organization to control endothelial permeability, with potential implications under pathological conditions. METHODS AND RESULTS: Genetic deletion of JAM-A in mice significantly increased vascular permeability. This was associated with significantly decreased expression of claudin-5 in the vasculature of various tissues, including brain and lung. We observed that C/EBP-α (CCAAT/enhancer-binding protein-α) can act as a transcription factor to trigger the expression of claudin-5 downstream of JAM-A, to thus enhance vascular barrier function. Accordingly, gain-of-function for C/EBP-α increased claudin-5 expression and decreased endothelial permeability, as measured by the passage of fluorescein isothiocyanate (FITC)-dextran through endothelial monolayers. Conversely, C/EBP-α loss-of-function showed the opposite effects of decreased claudin-5 levels and increased endothelial permeability. Mechanistically, JAM-A promoted C/EBP-α expression through suppression of ß-catenin transcriptional activity, and also through activation of EPAC (exchange protein directly activated by cAMP). C/EBP-α then directly binds the promoter of claudin-5 to thereby promote its transcription. Finally, JAM-A-C/EBP-α-mediated regulation of claudin-5 was lost in blood vessels from tissue biopsies from patients with glioblastoma and ovarian cancer. CONCLUSIONS: We describe here a novel role for the transcription factor C/EBP-α that is positively modulated by JAM-A, a component of tight junctions that acts through EPAC to up-regulate the expression of claudin-5, to thus decrease endothelial permeability. Overall, these data unravel a regulatory molecular pathway through which tight junctions limit vascular permeability. This will help in the identification of further therapeutic targets for diseases associated with endothelial barrier dysfunction. Graphic Abstract: An graphic abstract is available for this article.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Permeabilidade Capilar , Moléculas de Adesão Celular/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Receptores de Superfície Celular/metabolismo , Junções Íntimas/metabolismo , Adulto , Idoso , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Claudina-5/genética , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptores de Superfície Celular/genética , Transdução de Sinais , Junções Íntimas/genética , Regulação para Cima
3.
J Exp Med ; 217(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32407433

RESUMO

Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC-MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC-MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC-MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.


Assuntos
Linfócitos B/citologia , Diferenciação Celular , Centro Germinativo/citologia , Memória Imunológica , Animais , Linfócitos B/metabolismo , Ciclo Celular/genética , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citidina Desaminase/metabolismo , Camundongos Knockout , Ligação Proteica , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/genética
4.
Circ Res ; 122(2): 231-245, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29233846

RESUMO

RATIONALE: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. OBJECTIVE: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. METHODS AND RESULTS: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and ß-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/ß-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. CONCLUSIONS: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system.


Assuntos
Antígenos CD/biossíntese , Caderinas/biossíntese , Endotélio Vascular/metabolismo , Epigênese Genética/fisiologia , Animais , Antígenos CD/genética , Caderinas/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endotélio Vascular/ultraestrutura , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica/fisiologia
5.
Blood ; 119(9): 2159-70, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22246030

RESUMO

Endothelial cells (ECs) express 2 members of the cadherin family, VE and N-cadherin. Although VE-cadherin induces EC homotypic adhesion, N-cadherin function in ECs remains largely unknown. EC-specific inactivation of either VE or N-cadherin leads to early fetal lethality suggesting that these cadherins play a nonredundant role in vascular development. We report here that VE-cadherin negatively controls junctional localization and expression of N-cadherin by limiting p120-catenin availability and reducing ß-catenin transcriptional activity. Using EC lines expressing either VE or N-cadherin we found that both cadherins inhibit cell proliferation and apoptosis. Both trigger the phosphatidylinositol-3-OH-kinase (PI3K)-AKT-Forkhead-box protein-O1 (FoxO1) pathway and reduce ß-catenin transcriptional activity. The extent of signaling correlates with the total level of cadherins regardless of the type of cadherin expressed. In contrast, basal and fibroblast growth factor (FGF)-induced cell motility is promoted by N-cadherin and strongly inhibited by VE-cadherin. This opposite effect is partly because of the ability of VE-cadherin to associate with FGF receptor and the density-enhanced phosphatase-1 (Dep-1) which, in turn, inhibits receptor signaling. We conclude that VE and N-cadherin have both additive and divergent effects on ECs. Differences in signaling are due, in part, to cadherin association with growth factor receptors and modulation of their downstream signaling.


Assuntos
Caderinas/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Animais , Caderinas/genética , Adesão Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos da Linhagem 129 , Neovascularização Fisiológica/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcrição Gênica , Fatores de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo
6.
J Cell Biol ; 183(3): 409-17, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-18955553

RESUMO

The blood-brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/beta-catenin (beta-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of beta-cat in vivo enhances barrier maturation, whereas inactivation of beta-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of beta-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of beta-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of beta-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown.


Assuntos
Barreira Hematoencefálica/fisiologia , Sistema Nervoso Central/fisiologia , Circulação Cerebrovascular/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Genes Reporter , Humanos , Camundongos , Modelos Animais , Transdução de Sinais , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
7.
Nat Cell Biol ; 10(8): 923-34, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18604199

RESUMO

Intercellular junctions mediate adhesion and communication between adjoining cells. Although formed by different molecules, tight junctions (TJs) and adherens junctions (AJs) are functionally and structurally linked, but the signalling pathways behind this interaction are unknown. Here we describe a cell-specific mechanism of crosstalk between these two types of structure. We show that endothelial VE-cadherin at AJs upregulates the gene encoding the TJ adhesive protein claudin-5. This effect requires the release of the inhibitory activity of forkhead box factor FoxO1 and the Tcf-4-beta-catenin transcriptional repressor complex. Vascular endothelial (VE)-cadherin acts by inducing the phosphorylation of FoxO1 through Akt activation and by limiting the translocation of beta-catenin to the nucleus. These results offer a molecular basis for the link between AJs and TJs and explain why VE-cadherin inhibition may cause a marked increase in permeability.


Assuntos
Junções Aderentes/fisiologia , Antígenos CD/fisiologia , Caderinas/fisiologia , Proteínas de Membrana/genética , Junções Íntimas/genética , Regulação para Cima/genética , Animais , Linhagem Celular , Claudina-5 , Células Endoteliais , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo
8.
Biochim Biophys Acta ; 1775(2): 298-312, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17572301

RESUMO

During tumour growth the surrounding vasculature forms new vessels which penetrate into the stroma and bring oxygen and nutrients to the proliferating cancer cells. The ability to control and reduce this phenomenon may have important therapeutic implications. Angiogenesis is a complex event which requires endothelial cell sprouting, lumen formation, tubulogenesis and is regulated by the coordinated action of different transcription factors. Studies on promoters of endothelial cell-specific genes or gene inactivation experiments reveal the extreme complexity of the system. Many transcription factors are implicated in vascular development and the majority are not endothelial-specific. Their interaction leads to endothelial cell differentiation and acquisition of arterial, venous and lymphatic properties. Two large families of transcription factors, Foxs and Ets, play a major role in these events. They participate in both embryonic and adult angiogenesis. The FoxO subgroup regulates the correct organization of the vascular system, controlling excessive endothelial growth and inducing apoptosis both in embryos and adult mice. Ets factors participate in early endothelial differentiation and angiogenesis. Many members of this family are expressed very early in the developing vasculature and Ets consensus binding domains are present in essentially all endothelial cell-specific gene promoters. In this review we discuss the overall transcriptional regulation of vascular development with a particular focus on some specific members of these two families considered important in the formation and maintenance of the vascular network.


Assuntos
Diferenciação Celular/fisiologia , Endotélio Vascular/fisiologia , Fatores de Transcrição Forkhead/genética , Neovascularização Patológica/fisiopatologia , Proteínas Proto-Oncogênicas c-ets/genética , Transcrição Gênica , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neoplasias/fisiopatologia , Neovascularização Patológica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA