Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 191: 106747, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001708

RESUMO

The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.


Assuntos
Conotoxinas , Receptores Nicotínicos , Conotoxinas/farmacologia , Conotoxinas/química , Conotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Peptídeos/farmacologia , Membrana Celular/metabolismo , Neurônios/metabolismo , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/uso terapêutico
2.
Mar Drugs ; 21(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36827123

RESUMO

Elevenins are peptides found in a range of organisms, including arthropods, annelids, nematodes, and molluscs. They consist of 17 to 19 amino acid residues with a single conserved disulfide bond. The subject of this study, elevenin-Vc1, was first identified in the venom of the cone snail Conus victoriae (Gen. Comp. Endocrinol. 2017, 244, 11-18). Although numerous elevenin sequences have been reported, their physiological function is unclear, and no structural information is available. Upon intracranial injection in mice, elevenin-Vc1 induced hyperactivity at doses of 5 or 10 nmol. The structure of elevenin-Vc1, determined using nuclear magnetic resonance spectroscopy, consists of a short helix and a bend region stabilised by the single disulfide bond. The elevenin-Vc1 structural fold is similar to that of α-conotoxins such as α-RgIA and α-ImI, which are also found in the venoms of cone snails and are antagonists at specific subtypes of nicotinic acetylcholine receptors (nAChRs). In an attempt to mimic the functional motif, Asp-Pro-Arg, of α-RgIA and α-ImI, we synthesised an analogue, designated elevenin-Vc1-DPR. However, neither elevenin-Vc1 nor the analogue was active at six different human nAChR subtypes (α1ß1εδ, α3ß2, α3ß4, α4ß2, α7, and α9α10) at 1 µM concentrations.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Camundongos , Humanos , Animais , Conotoxinas/farmacologia , Caramujo Conus/metabolismo , Peçonhas , Receptores Nicotínicos/metabolismo , Peptídeos/metabolismo , Antagonistas Nicotínicos/farmacologia
3.
J Med Chem ; 65(24): 16204-16217, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36137181

RESUMO

α-Conotoxins (α-CTxs) can selectively target nicotinic acetylcholine receptors (nAChRs) and are important drug leads for the treatment of cancer, chronic pain, and neuralgia. Here, we chemically synthesized a formerly defined rat α7 nAChR targeting α-CTx Mr1.1 and evaluated its activity at human nAChRs. Mr1.1 was most potent at the human (h) α9α10 nAChR with a half-maximal inhibitory concentration (IC50) of 92.0 nM. Molecular dynamic simulations suggested that Mr1.1 favorably binds at the α10(+)α9(-) and α9(+)α9(-) sites via hydrogen bonds and salt bridges, stabilizing the channel in a closed conformation. Although Mr1.1 and another antagonist, α-CTx Vc1.1 share high sequence similarity and disulfide-bond framework, Mr1.1 has distinct orientations at hα9α10. Based on the Mr1.1-hα9α10 model, analogues were generated, and the more potent Mr1.1[S4Dap], antagonized hα9α10 with an IC50 of 4.0 nM. Furthermore, Mr1.1[S4Dap] displayed analgesic activity in the rat chronic constriction injury (CCI) pain model and therefore presents a promising drug candidate.


Assuntos
Dor Crônica , Conotoxinas , Receptores Nicotínicos , Humanos , Ratos , Animais , Conotoxinas/química , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor
4.
Mar Drugs ; 20(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36005500

RESUMO

Conopeptides are peptides in the venom of marine cone snails that are used for capturing prey or as a defense against predators. A new cysteine-poor conopeptide, Czon1107, has exhibited non-competitive inhibition with an undefined allosteric mechanism in the human (h) α3ß4 nicotinic acetylcholine receptors (nAChRs). In this study, the binding mode of Czon1107 to hα3ß4 nAChR was investigated using molecular dynamics simulations coupled with mutagenesis studies of the peptide and electrophysiology studies on heterologous hα3ß4 nAChRs. Overall, this study clarifies the structure-activity relationship of Czon1107 and hα3ß4 nAChR and provides an important experimental and theoretical basis for the development of new peptide drugs.


Assuntos
Antagonistas Nicotínicos , Receptores Nicotínicos , Dissulfetos/metabolismo , Humanos , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Peptídeos/química , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade
5.
ACS Chem Neurosci ; 13(8): 1245-1250, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35357806

RESUMO

α-Conotoxins that target muscle nicotinic acetylcholine receptors (nAChRs) commonly fall into two structural classes, frameworks I and II containing two and three disulfide bonds, respectively. Conotoxin SII is the sole member of the cysteine-rich framework II with ill-defined interactions at the nAChRs. Following directed synthesis of α-SII, NMR analysis revealed a well-defined structure containing a 310-helix frequently employed by framework I α-conotoxins; α-SII acted at the muscle nAChR with half-maximal inhibitory concentrations (IC50) of 120 nM (adult) and 370 nM (fetal) though weakly at neuronal nAChRs. Truncation of α-SII to a two disulfide bond amidated peptide with framework I disulfide connectivity led to similar activity. Surprisingly, the more constrained α-SII was less stable under mild reducing conditions and displayed a unique docking mode at the nAChR.


Assuntos
Conotoxinas , Receptores Nicotínicos , Sequência de Aminoácidos , Conotoxinas/farmacologia , Cisteína , Dissulfetos , Músculos/metabolismo , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074873

RESUMO

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Assuntos
Nociceptores/efeitos dos fármacos , Papio/metabolismo , Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Aranhas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Canais Iônicos/metabolismo , Camundongos , Dor/tratamento farmacológico , Tetrodotoxina/farmacologia
7.
Biochem Pharmacol ; 190: 114638, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34062129

RESUMO

The short disulfide-rich α-conotoxins derived from the venom of Conus snails comprise a conserved CICII(m)CIII(n)CIV cysteine framework (m and n, number of amino acids) and the majority antagonize nicotinic acetylcholine receptors (nAChRs). Depending on disulfide connectivity, α-conotoxins can exist as either globular (CI-CIII, CII-CIV), ribbon (CI-CIV, CII-CIII) or bead (CI-CII, CIII-CIV) isomers. In the present study, C. geographus α-conotoxins GI, GIB, G1.5 and G1.9 were chemically synthesized as globular and ribbon isomers and their activity investigated at human nAChRs expressed in Xenopus oocytes using the two-electrode voltage clamp recording technique. Both the globular and ribbon isomers of the 3/5 (m/n) α-conotoxins GI and GIB selectively inhibit heterologous human muscle-type α1ß1δε nAChRs, whereas G1.5, a 4/7 α-conotoxin, selectively antagonizes neuronal (non-muscle) nAChR subtypes particularly human α3ß2, α7 and α9α10 nAChRs. In contrast, globular and ribbon isomers of G1.9, a novel C-terminal elongated 4/8 α-conotoxin exhibited no activity at the human nAChR subtypes studied. This study reinforces earlier observations that 3/5 α-conotoxins selectively target the muscle nAChR subtypes, although interestingly, GIB is also active at α7 and α9 α10 nAChRs. The 4/7 α-conotoxins target human neuronal nAChR subtypes whereas the pharmacology of the 4/8 α-conotoxin remains unknown.


Assuntos
Conotoxinas/química , Conotoxinas/farmacologia , Caramujo Conus/fisiologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Humanos , Antagonistas Nicotínicos/química , Oócitos , Técnicas de Patch-Clamp , Isoformas de Proteínas , Subunidades Proteicas , Xenopus laevis/metabolismo
8.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712468

RESUMO

Venomous animals hunt using bioactive peptides, but relatively little is known about venom small molecules and the resulting complex hunting behaviors. Here, we explored the specialized metabolites from the venom of the worm-hunting cone snail, Conus imperialis Using the model polychaete worm Platynereis dumerilii, we demonstrate that C. imperialis venom contains small molecules that mimic natural polychaete mating pheromones, evoking the mating phenotype in worms. The specialized metabolites from different cone snails are species-specific and structurally diverse, suggesting that the cones may adopt many different prey-hunting strategies enabled by small molecules. Predators sometimes attract prey using the prey's own pheromones, in a strategy known as aggressive mimicry. Instead, C. imperialis uses metabolically stable mimics of those pheromones, indicating that, in biological mimicry, even the molecules themselves may be disguised, providing a twist on fake news in chemical ecology.


Assuntos
Caramujo Conus , Comportamento Predatório , Animais , Caramujo Conus/química , Peptídeos/química , Feromônios/química , Caramujos
9.
Pharmacol Ther ; 222: 107792, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33309557

RESUMO

α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.


Assuntos
Conotoxinas , Antagonistas Nicotínicos , Receptores Nicotínicos , Animais , Química Farmacêutica , Conotoxinas/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos
10.
J Med Chem ; 63(6): 2974-2985, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101438

RESUMO

The affinity of α-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) peptide inhibitors, can be enhanced by dendrimerization. It has been hypothesized that this improvement arose from simultaneous binding of the α-conotoxins to several spatially adjacent sites. We here engineered several α-conotoxin dimers using a linker length compatible between neighboring binding sites on the same receptor. Remarkably, the dimer of α-conotoxin PeIA compared to the monomer displayed an increase in potency by 11-fold (IC50 = 1.9 nM) for the human α9α10 nAChR. The dimerization of α-conotoxin RgIA# resulted in a dual inhibitor that targets both α9α10 and α7 nAChR subtypes with an IC50 = ∼50 nM. The RgIA# dimer is therapeutically interesting because it is the first dual inhibitor that potently and selectively inhibits these two nAChR subtypes, which are both involved in the etiology of several cancers. We propose that the dimerization of α-conotoxins is a simpler and efficient alternative strategy to dendrimers for enhancing the activity of α-conotoxins.


Assuntos
Conotoxinas/metabolismo , Antagonistas Nicotínicos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Humanos , Modelos Moleculares , Antagonistas Nicotínicos/química , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
11.
ACS Chem Biol ; 13(6): 1577-1587, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746088

RESUMO

α-Conotoxins are disulfide-bonded peptides from cone snail venoms and are characterized by their affinity for nicotinic acetylcholine receptors (nAChR). Several α-conotoxins with distinct selectivity for nAChR subtypes have been identified as potent analgesics in animal models of chronic pain. However, a number of α-conotoxins have been shown to inhibit N-type calcium channel currents in rodent dissociated dorsal root ganglion (DRG) neurons via activation of G protein-coupled GABAB receptors (GABABR). Therefore, it is unclear whether activation of GABABR or inhibition of α9α10 nAChRs is the analgesic mechanism. To investigate the mechanisms by which α-conotoxins provide analgesia, we synthesized a suite of Vc1.1 analogues where all residues, except the conserved cysteines, in Vc1.1 were individually replaced by alanine (A), lysine (K), and aspartic acid (D). Our results show that the amino acids in the first loop play an important role in binding of the peptide to the receptor, whereas those in the second loop play an important role for the selectivity of the peptide for the GABABR over α9α10 nAChRs. We designed a cVc1.1 analogue that is >8000-fold selective for GABABR-mediated inhibition of high voltage-activated (HVA) calcium channels over α9α10 nAChRs and show that it is analgesic in a mouse model of chronic visceral hypersensitivity (CVH). cVc1.1[D11A,E14A] caused dose-dependent inhibition of colonic nociceptors with greater efficacy in ex vivo CVH colonic nociceptors relative to healthy colonic nociceptors. These findings suggest that selectively targeting GABABR-mediated HVA calcium channel inhibition by α-conotoxins could be effective for the treatment of chronic visceral pain.


Assuntos
Analgésicos/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Conotoxinas/uso terapêutico , Dor/tratamento farmacológico , Analgésicos/síntese química , Analgésicos/química , Animais , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo N/metabolismo , Conotoxinas/síntese química , Conotoxinas/química , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Antagonistas Nicotínicos/síntese química , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/uso terapêutico , Ratos Wistar , Receptores de GABA-B/metabolismo , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
12.
Br J Pharmacol ; 175(11): 1855-1868, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28477355

RESUMO

Neuronal α3-containing nicotinic acetylcholine receptors (nAChRs) in the peripheral nervous system (PNS) and non-neuronal tissues are implicated in a number of severe disease conditions ranging from cancer to cardiovascular diseases and chronic pain. However, despite the physiological characterization of mouse models and cell lines, the precise pathophysiology of nAChRs outside the CNS remains not well understood, in part because there is a lack of subtype-selective antagonists. α-Conotoxins isolated from cone snail venom exhibit characteristic individual selectivity profiles for nAChRs and, therefore, are excellent tools to study the determinants for nAChR-antagonist interactions. Given that human α3ß4 subtype selective α-conotoxins are scarce and this is a major nAChR subtype in the PNS, the design of new peptides targeting this nAChR subtype is desirable. Recent studies using α-conotoxins RegIIA and AuIB, in combination with nAChR site-directed mutagenesis and computational modelling, have shed light onto specific nAChR residues, which determine the selectivity of the α-conotoxins for the human α3ß2 and α3ß4 subtypes. Publications describing the selectivity profile and binding sites of other α-conotoxins confirm that subtype-selective nAChR antagonists often work through common mechanisms by interacting with the same structural components and sites on the receptor. LINKED ARTICLES: This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.


Assuntos
Conotoxinas/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Humanos , Modelos Moleculares
13.
Neuropharmacology ; 127: 253-259, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28917942

RESUMO

α-Conotoxins inhibit nicotinic acetylcholine receptors (nAChRs) and are used as probes to study cholinergic pathways in vertebrates. Model organisms, such as Drosophila melanogaster, express nAChRs in their CNS that are suitable to investigate the neuropharmacology of α-conotoxins in vivo. Here we report the paired nanoinjection of native α-conotoxin PIA and two novel α-conotoxins, PIC and PIC[O7], from the injected venom of Conus purpurascens and electrophysiological recordings of their effects on the giant fiber system (GFS) of D. melanogaster and heterologously expressed nAChRs in Xenopus oocytes. α-PIA caused disruption of the function of giant fiber dorsal longitudinal muscle (GF-DLM) pathway by inhibiting the Dα7 nAChR a homolog to the vertebrate α7 nAChR, whereas PIC and PIC[O7] did not. PIC and PIC[O7] reversibly inhibited ACh-evoked currents mediated by vertebrate rodent (r)α1ß1δγ, rα1ß1δε and human (h)α3ß2, but not hα7 nAChR subtypes expressed in Xenopus oocytes with the following selectivity: rα1ß1δε > rα1ß1δγ ≈ hα3ß2 >> hα7. Our study emphasizes the importance of loop size and α-conotoxin sequence specificity for receptor binding. These studies can be used for the evaluation of the neuropharmacology of novel α-conotoxins that can be utilized as molecular probes for diseases such as, Alzheimer's, Parkinson's, and cancer. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'


Assuntos
Conotoxinas/farmacologia , Caramujo Conus/química , Potenciais da Membrana/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Conotoxinas/química , Relação Dose-Resposta a Droga , Drosophila melanogaster , Potenciais da Membrana/genética , Microinjeções , Modelos Moleculares , Oócitos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Xenopus
14.
J Biol Chem ; 292(41): 17101-17112, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28851841

RESUMO

Conotoxin GeXIVA inhibits the α9α10 nicotinic acetylcholine receptor (nAChR) and is analgesic in animal models of pain. α-Conotoxins have four cysteines that can have three possible disulfide connectivities: globular (CysI-CysIII and CysII-CysIV), ribbon (CysI-CysIV and CysII-CysIII), or bead (CysI-CysII and CysIII-CysIV). Native α-conotoxins preferably adopt the globular connectivity, and previous studies of α-conotoxins have focused on the globular isomers as the ribbon and bead isomers typically have lower potency at nAChRs than the globular form. A recent report showed that the bead and ribbon isomers of GeXIVA are more potent than the globular isomer, with low nanomolar half-maximal inhibitory concentrations (IC50). Despite this high potency, the therapeutic potential of GeXIVA is limited, because like most peptides, it is susceptible to proteolytic degradation and is challenging to synthesize in high yield. Here we used backbone cyclization as a strategy to improve the folding yield as well as increase the serum stability of ribbon GeXIVA while preserving activity at the α9α10 nAChR. Specifically, cyclization of ribbon GeXIVA with a two-residue linker maintained the biological activity at the human α9α10 nAChR and improved stability in human serum. Short linkers led to selective formation of the ribbon disulfide isomer without requiring orthogonal protection. Overall, this study highlights the value of backbone cyclization in directing folding, improving yields, and stabilizing conotoxins with therapeutic potential.


Assuntos
Analgésicos/química , Conotoxinas/química , Dobramento de Proteína , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína
15.
Mar Drugs ; 15(6)2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598389

RESUMO

Conotoxins are a pool of disulfide-rich peptide neurotoxins produced by cone snails for predation and defense. They are a rich reservoir of novel ligands for ion channels, neurotransmitter receptors and transporters in the nervous system. In this study, we identified a novel conotoxin component, O-conotoxin GeXXVIIA, from the venom of Conus generalis. The native form of this component is a disulfide-linked homodimer of a 5-Cys-containing peptide. Surprisingly, our electrophysiological studies showed that, in comparison to the folded monomers, the linear peptide of this toxin had the highest inhibitory activity at the human α9α10 nicotinic acetylcholine receptor (nAChR), with an IC50 of 16.2 ± 1.4 nM. The activities of the N-terminal and C-terminal halves of the linear toxin are markedly reduced compared with the full-length toxin, suggesting that the intact sequence is required to potently inhibit the hα9α10 nAChR. α9α10 nAChRs are expressed not only in the nervous system, but also in a variety of non-neuronal cells, such as cochlear hair cells, keratinocytes, epithelial and immune cells. A potent inhibitor of human α9α10 nAChRs, such as GeXXVIIA, would facilitate unraveling the functions of this nAChR subtype. Furthermore, this unusual nAChR inhibitor may lead to the development of novel α9α10 nAChR-targeting drugs.


Assuntos
Conotoxinas/metabolismo , Antagonistas Nicotínicos/metabolismo , Peptídeos/metabolismo , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Caramujo Conus/metabolismo , Humanos , Neurotoxinas/metabolismo , Oócitos/metabolismo , Xenopus laevis/metabolismo
16.
Mar Drugs ; 15(6)2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28587231

RESUMO

Nicotinic acetylcholine receptors (nAChRs) play a fundamental role in nervous signal transmission, therefore various antagonists and agonists are highly desired to explore the structure and function of nAChRs. Recently, a novel dimeric αD-conotoxin GeXXA was identified to inhibit nAChRs by binding at the top surface of the receptors, and the monomeric C-terminal domain (CTD) of αD-GeXXA retains some inhibitory activity. In this study, the internal dimeric N-terminal domain (NTD) of this conopeptide was further investigated. We first developed a regio-selective protection strategy to chemically prepare the anti-parallel dimeric NTD, and found that the isolated NTD part of GeXXA possesses the nAChR-inhibitory activity, the subtype-dependence of which implies a preferred binding of NTD to the ß subunits of nAChR. Deletion of the NTD N-terminal residues did not affect the activity of NTD, indicating that the N-terminus is not involved in the interaction with nAChRs. By optimizing the sequence of NTD, we obtained a fully active single-chain cyclic NTD, based on which 4 Arg residues were found to interact with nAChRs. These results demonstrate that the NTD part of αD-GeXXA is a "lid-covering" nAChR inhibitor, displaying a novel inhibitory mechanism distinct from other allosteric ligands of nAChRs.


Assuntos
Conotoxinas/química , Conotoxinas/metabolismo , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Peptídeos/antagonistas & inibidores , Receptores Nicotínicos/metabolismo , Animais , Caramujo Conus/química , Caramujo Conus/metabolismo , Ligantes , Subunidades Proteicas/metabolismo , Transmissão Sináptica/efeitos dos fármacos
17.
Angew Chem Int Ed Engl ; 55(15): 4692-6, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26948522

RESUMO

α-Conotoxins are disulfide-rich peptides that target nicotinic acetylcholine receptors. Recently we identified several α-conotoxins that also modulate voltage-gated calcium channels by acting as G protein-coupled GABA(B) receptor (GABA(B)R) agonists. These α-conotoxins are promising drug leads for the treatment of chronic pain. To elucidate the diversity of α-conotoxins that act through this mechanism, we synthesized and characterized a set of peptides with homology to α-conotoxins known to inhibit high voltage-activated calcium channels via GABA(B)R activation. Remarkably, all disulfide isomers of the active α-conotoxins Pu1.2 and Pn1.2, and the previously studied Vc1.1 showed similar levels of biological activity. Structure determination by NMR spectroscopy helped us identify a simplified biologically active eight residue peptide motif containing a single disulfide bond that is an excellent lead molecule for developing a new generation of analgesic peptide drugs.


Assuntos
Motivos de Aminoácidos , Bloqueadores dos Canais de Cálcio/farmacologia , Conotoxinas/química , Cisteína/análise , Receptores de GABA-B/metabolismo , Sequência de Aminoácidos , Animais , Conotoxinas/farmacologia , Humanos , Receptores de GABA-B/química , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA