RESUMO
Adrenaline is a sympathomimetic drug used to maintain pupil dilation and to decrease the risk of bleeding. The aim of this study was to demonstrate if adrenaline could exert antifibrotic effects in glaucoma surgery. Adrenaline was tested in fibroblast-populated collagen contraction assays and there was a dose-response decrease in fibroblast contractility: matrices decreased to 47.4% (P = 0.0002) and 86.6% (P = 0.0036) with adrenaline 0.0005% and 0.01%, respectively. There was no significant decrease in cell viability even at high concentrations. Human Tenon's fibroblasts were also treated with adrenaline (0%, 0.0005%, 0.01%) for 24 h and RNA-Sequencing was performed on the Illumina NextSeq 2000. We carried out detailed gene ontology, pathway, disease and drug enrichment analyses. Adrenaline 0.01% upregulated 26 G1/S and 11 S-phase genes, and downregulated 23 G2 and 17 M-phase genes (P < 0.05). Adrenaline demonstrated similar pathway enrichment to mitosis and spindle checkpoint regulation. Adrenaline 0.05% was also injected subconjunctivally during trabeculectomy, PreserFlo Microshunt and Baerveldt 350 tube surgeries, and patients did not experience any adverse effects. Adrenaline is a safe and cheap antifibrotic drug that significantly blocks key cell cycle genes when used at high concentrations. Unless contraindicated, we recommend subconjunctival injections of adrenaline (0.05%) in all glaucoma bleb-forming surgeries.
Assuntos
Glaucoma , Trabeculectomia , Humanos , Glaucoma/tratamento farmacológico , Glaucoma/genética , Glaucoma/cirurgia , Epinefrina/farmacologia , Epinefrina/metabolismo , Vasoconstritores/farmacologia , Vasoconstritores/metabolismo , Genes cdc , Fibroblastos/metabolismoRESUMO
OBJECTIVES: To develop a sustained release 5-fluorouracil (5-FU) implant by three-dimensional (3D) printing to effectively prevent conjunctival fibrosis after glaucoma surgery. METHODS: 3D-printed implants composed of polycaprolactone (PCL) and chitosan (CS) were fabricated by heat extrusion technology and loaded with 1% 5-FU. Light microscopy and scanning electron microscopy were used to study the surface morphology. The 5-FU concentration released over 8 weeks was measured by ultraviolet visible spectroscopy. The effects on cell viability, fibroblast contractility and the expression of key fibrotic genes were assessed in human conjunctival fibroblasts. KEY FINDINGS: The PCL-CS-5-FU implant sustainably released 5-FU over 8 weeks and the peak concentration was over 6.1 µg/ml during weeks 1 and 2. The implant had a smooth surface and its total weight decreased by 3.5% after 8 weeks. The PCL-CS-5-FU implant did not affect cell viability in conjunctival fibroblasts and sustainably suppressed fibroblast contractility and key fibrotic genes for 8 weeks. CONCLUSIONS: The PCL-CS-5-FU implant was biocompatible and degradable with a significant effect in suppressing fibroblast contractility. The PCL-CS-5-FU implant could be used as a sustained release drug implant, replacing the need for repeated 5-FU injections in clinic, to prevent conjunctival fibrosis after glaucoma surgery.
Assuntos
Quitosana , Glaucoma , Humanos , Preparações de Ação Retardada/química , Fluoruracila/farmacologia , Quitosana/química , Impressão TridimensionalRESUMO
The primary cause of failure for minimally invasive glaucoma surgery (MIGS) is fibrosis in the trabecular meshwork (TM) that regulates the outflow of aqueous humour, and no anti-fibrotic drug is available for intraocular use in MIGS. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a promising anti-fibrotic target. This study aims to utilise a novel lipid nanoparticle (LNP) to deliver MRTF-B siRNA into human TM cells and to compare its effects with those observed in human conjunctival fibroblasts (FF). Two LNP formulations were prepared with and without the targeting peptide cΥ, and with an siRNA concentration of 50 nM. We examined the biophysical properties and encapsulation efficiencies of the LNPs, and evaluated the effects of MRTF-B silencing on cell viability, key fibrotic genes expression and cell contractility. Both LNP formulations efficiently silenced MRTF-B gene and were non-cytotoxic in TM and FF cells. The presence of cΥ made the LNPs smaller and more cationic, but had no significant effect on encapsulation efficiency. Both TM and FF cells also showed significantly reduced contractibility after transfection with MRTF-B siRNA LNPs. In TM cells, LNPs with cΥ achieved a greater decrease in contractility compared to LNPs without cΥ. In conclusion, we demonstrate that the novel CL4H6-LNPs are able to safely and effectively deliver MRTF-B siRNA into human TM cells. LNPs can serve as a promising non-viral gene therapy to prevent fibrosis in MIGS.
RESUMO
3D printing was invented thirty years ago. However, its application in healthcare became prominent only in recent years to provide solutions for drug delivery and clinical challenges, and is constantly evolving. This cost-efficient technique utilises biocompatible materials and is used to develop model implants to provide a greater understanding of human anatomy and diseases, and can be used for organ transplants, surgical planning and for the manufacturing of advanced drug delivery systems. In addition, 3D printed medical devices and implants can be customised for each patient to provide a more tailored treatment approach. The advantages and applications of 3D printing can be used to treat patients with different eye conditions, with advances in 3D bioprinting offering novel therapy applications in ophthalmology. The purpose of this review paper is to provide an in-depth understanding of the applications and advantages of 3D printing in treating different ocular conditions in the cornea, glaucoma, retina, lids and orbits.
Assuntos
Bioimpressão , Oftalmologia , Humanos , Medicina de Precisão , Impressão Tridimensional , Próteses e ImplantesRESUMO
Despite recent advances in the field of mRNA therapy, the lack of safe and efficacious delivery vehicles with pharmaceutically developable properties remains a major limitation. Here, we describe the systematic optimisation of lipid-peptide nanocomplexes for the delivery of mRNA in two murine cancer cell types, B16-F10 melanoma and CT26 colon carcinoma as well as NCI-H358 human lung bronchoalveolar cells. Different combinations of lipids and peptides were screened from an original lipid-peptide nanocomplex formulation for improved luciferase mRNA transfection in vitro by a multi-factorial screening approach. This led to the identification of key structural elements within the nanocomplex associated with substantial improvements in mRNA transfection efficiency included alkyl tail length of the cationic lipid, the fusogenic phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and cholesterol. The peptide component (K16GACYGLPHKFCG) was further improved by the inclusion of a linker, RVRR, that is cleavable by the endosomal enzymes cathepsin B and furin, and a hydrophobic motif (X-S-X) between the mRNA packaging (K16) and receptor targeting domains (CYGLPHKFCG). Nanocomplex transfections of a murine B16-F10 melanoma tumour supported the inclusion of cholesterol for optimal transfection in vivo as well as in vitro. In vitro transfections were also performed with mRNA encoding interleukin-15 as a potential immunotherapy agent and again, the optimised formulation with the key structural elements demonstrated significantly higher expression than the original formulation. Physicochemical characterisation of the nanocomplexes over time indicated that the optimal formulation retained biophysical properties such as size, charge and mRNA complexation efficiency for 14 days upon storage at 4 °C without the need for additional stabilising agents. In summary, we have developed an efficacious lipid-peptide nanocomplex with promising pharmaceutical development properties for the delivery of therapeutic mRNA.
Assuntos
Lipossomos , Melanoma , Animais , Humanos , Lipídeos/química , Lipossomos/química , Camundongos , Peptídeos/química , RNA Mensageiro/genética , TransfecçãoRESUMO
During the last decade, the fields of advanced and personalized therapeutics have been constantly evolving, utilizing novel techniques such as gene editing and RNA therapeutic approaches. However, the method of delivery and tissue specificity remain the main hurdles of these approaches. Exosomes are natural carriers of functional small RNAs and proteins, representing an area of increasing interest in the field of drug delivery. It has been demonstrated that the exosome cargo, especially miRNAs, is at least partially responsible for the therapeutic effects of exosomes. Exosomes deliver their luminal content to the recipient cells and can be used as vesicles for the therapeutic delivery of RNAs and proteins. Synthetic therapeutic drugs can also be encapsulated into exosomes as they have a hydrophilic core, which makes them suitable to carry water-soluble drugs. In addition, engineered exosomes can display a variety of surface molecules, such as peptides, to target specific cells in tissues. The exosome properties present an added advantage to the targeted delivery of therapeutics, leading to increased efficacy and minimizing the adverse side effects. Furthermore, exosomes are natural nanoparticles found in all cell types and as a result, they do not elicit an immune response when administered. Exosomes have also demonstrated decreased long-term accumulation in tissues and organs and thus carry a low risk of systemic toxicity. This review aims to discuss all the advances in exosome therapies in ophthalmology and to give insight into the challenges that would need to be overcome before exosome therapies can be translated into clinical practice.
Assuntos
Exossomos , MicroRNAs , Nanopartículas , Oftalmologia , Sistemas de Liberação de Medicamentos , Exossomos/química , Exossomos/metabolismo , Humanos , MicroRNAs/metabolismoRESUMO
The master regulator of the fibrosis cascade is the myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway, making it a key target for anti-fibrotic therapeutics. In the past, inhibitors and small interfering RNAs (siRNAs) targeting the MRTF-B gene have been deployed to counter fibrosis in the eye, with the latter showing promising results. However, the biggest challenge in implementing siRNA therapeutics is the method of delivery. In this study, we utilised the novel, pH-sensitive, cationic lipid CL4H6, which has previously demonstrated potent targeting of hepatocytes and endosomal escape, to safely and efficiently deliver an MRTF-B siRNA into human conjunctival fibroblasts. We prepared two lipid nanoparticle (LNP) formulations, incorporating targeting cleavable peptide cY in one of them, and measured their physicochemical properties and silencing effect in human conjunctival fibroblasts. Both proved to be non-cytotoxic at a concentration of 50 nM and effectively silenced the MRTF-B gene in vitro, with the targeting cleavable peptide not affecting the silencing efficiency [LNP with cY: 62.1% and 81.5% versus LNP without cY: 77.7% and 80.2%, at siRNA concentrations of 50 nM (p = 0.06) and 100 nM (p = 0.09), respectively]. On the other hand, the addition of the targeting cleavable peptide significantly increased the encapsulation efficiency of the LNPs from 92.5% to 99.3% (p = 0.0005). In a 3D fibroblast-populated collagen matrix model, both LNP formulations significantly decreased fibroblast contraction after a single transfection. We conclude that the novel PEGylated CL4H6-MRTF-B siRNA-loaded LNPs represent a promising therapeutic approach to prevent conjunctival fibrosis after glaucoma filtration surgery.
RESUMO
The use of RNA interference technology has proven to inhibit the expression of many target genes involved in the underlying pathogenesis of several diseases affecting various systems. First established in in vitro and later in animal studies, small interfering RNA (siRNA) and antisense oligonucleotide (ASO) therapeutics are now entering clinical trials with the potential of clinical translation to patients. Gene-silencing therapies have demonstrated promising responses in ocular disorders, predominantly due to the structure of the eye being a closed and compartmentalised organ. However, although the efficacy of such treatments has been observed in both preclinical studies and clinical trials, there are issues pertaining to the use of these drugs which require more extensive research with regards to the delivery and stability of siRNAs and ASOs. This would improve their use for long-term treatment regimens and alleviate the difficulties experienced by patients with ocular diseases. This review provides a detailed insight into the recent developments and clinical trials that have been conducted for several gene-silencing therapies, including ISTH0036, SYL040012, SYL1001, PF-04523655, Sirna-027, QR-110, QR-1123, QR-421a and IONIS-FB-LRX in glaucoma, dry eye disease, age-related macular degeneration, diabetic macular oedema and various inherited retinal diseases. Our aim is to explore the potential of these drugs whilst evaluating their associated advantages and disadvantages, and to discuss the future translation of RNA therapeutics in ophthalmology.
Assuntos
Terapia Genética/métodos , Glaucoma/terapia , Degeneração Macular/terapia , Edema Macular/terapia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Doenças Retinianas/terapia , Ensaios Clínicos como Assunto , Inativação Gênica , Humanos , Pesquisa Translacional BiomédicaRESUMO
The authors aim to develop siRNA therapeutics for cancer that can be administered systemically to target tumors and retard their growth. The efficacy of systemic delivery of siRNA to tumors with nanoparticles based on lipids or polymers is often compromised by their rapid clearance from the circulation by the liver. Here, multifunctional cationic and anionic siRNA nanoparticle formulations are described, termed receptor-targeted nanocomplexes (RTNs), that comprise peptides for siRNA packaging into nanoparticles and receptor-mediated cell uptake, together with lipids that confer nanoparticles with stealth properties to enhance stability in the circulation, and fusogenic properties to enhance endosomal release within the cell. Intravenous administration of RTNs in mice leads to predominant accumulation in xenograft tumors, with very little detected in the liver, lung, or spleen. Although non-targeted RTNs also enter the tumor, cell uptake appears to be RGD peptide-dependent indicating integrin-mediated uptake. RTNs with siRNA against MYCN (a member of the Myc family of transcription factors) in mice with MYCN-amplified neuroblastoma tumors show significant retardation of xenograft tumor growth and enhanced survival. This study shows that RTN formulations can achieve specific tumor-targeting, with minimal clearance by the liver and so enable delivery of tumor-targeted siRNA therapeutics.
RESUMO
Oxidovanadium complexes with organic ligands are well known to have cytotoxic or differentiating capabilities against a range of cancer cell types. Their limited use in clinical testing though has resulted largely from uncertainties about the long-term toxicities of such complexes, due in part to the speciation to vanadate ions in the circulation. We hypothesised that more highly stable complexes, delivered using liposomes, may provide improved opportunities for oxidovanadium applications against cancer. In this study we sourced specifically hydrophobic forms of oxidovanadium complexes with the explicit aim of demonstrating liposomal encapsulation, bioavailability in cultured neuroblastoma cells, and effective cytotoxic or differentiating activity. Our data show that four ethanol-solubilised complexes with amine bisphenol, aminoalcohol bisphenol or salan ligands are equally or more effective than a previously used complex bis(maltolato)oxovanadium(V) in neuroblastoma cell lines. Moreover, we show that one of these complexes can be stably incorporated into cationic liposomes where it retains very good bioavailability, apparently low speciation and enhanced efficacy compared to ethanol delivery. This study provides the first proof-of-concept that stable, hydrophobic oxidovanadium complexes retain excellent cellular activity when delivered effectively to cancer cells with nanotechnology. This offers the improved prospect of applying oxidovanadium-based drugs in vivo with increased stability and reduced off-target toxicity.
Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipossomos , Neuroblastoma/tratamento farmacológico , Vanadatos/administração & dosagem , Linhagem Celular Tumoral , Humanos , Neuroblastoma/patologiaRESUMO
Retinoid treatment is employed during residual disease treatment in neuroblastoma, where the aim is to induce neural differentiation or death in tumour cells. However, although therapeutically effective, retinoids have only modest benefits and suffer from poor pharmacokinetic properties. In vivo, retinoids induce CYP26 enzyme production in the liver, enhancing their own rapid metabolic clearance, while retinoid resistance in tumour cells themselves is considered to be due in part to increased CYP26 production. Retinoic acid metabolism blocking agents (RAMBAs), which inhibit CYP26 enzymes, can improve retinoic acid (RA) pharmacokinetics in pre-clinical neuroblastoma models. Here, we demonstrate that in cultured neuroblastoma tumour cells, RAMBAs enhance RA action as seen by morphological differentiation, AKT signalling and suppression of MYCN protein. Although active as retinoid enhancers, these RAMBAs are highly hydrophobic and their effective delivery in humans will be very challenging. Here, we demonstrate that such RAMBAs can be loaded efficiently into cationic liposomal particles, where the RAMBAs achieve good bioavailability and activity in cultured tumour cells. This demonstrates the efficacy of RAMBAs in enhancing retinoid signalling in neuroblastoma cells and shows for the first time that liposomal delivery of hydrophobic RAMBAs is a viable approach, providing novel opportunities for their delivery and application in humans.
Assuntos
Azóis/farmacologia , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/agonistas , Tretinoína/metabolismo , Azóis/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos , Neuroblastoma , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Transdução de SinaisRESUMO
P53 mutations are responsible for drug-resistance of tumour cells which impacts on the efficacy of treatment. Alternative tumour suppressor pathways need to be explored to treat p53- deficient tumours. The E3 ubiquitin ligase, ITCH, negatively regulates the tumour suppressor protein TP73, providing a therapeutic target to enhance the sensitivity of the tumour cells to the treatment. In the present study, two p53-mutant neuroblastoma cell lines were used as in vitro models. Using immunostaining, western blot and qPCR methods, we firstly identified that ITCH was expressed on p53-mutant neuroblastoma cell lines. Transfection of these cell lines with ITCH siRNA could effectively silence the ITCH expression, and result in the stabilization of TP73 protein, which mediated the apoptosis of the neuroblastoma cells upon irradiation treatment. Finally, in vivo delivery of the ITCH siRNA using nanoparticles to the neuroblastoma xenograft mouse model showed around 15-20% ITCH silencing 48 hours after transfection. Our data suggest that ITCH could be silenced both in vitro and in vivo using nanoparticles, and silencing of ITCH sensitizes the tumour cells to irradiation treatment. This strategy could be further explored to combine the chemotherapy/radiotherapy treatment to enhance the therapeutic effects on p53-deficient neuroblastoma.
Assuntos
Neuroblastoma/terapia , Proteínas Repressoras/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/genética , Neuroblastoma/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We developed an anticancer siRNA delivery system (named HLPR) through modular assembly of endogenous molecules. The structure of HLPR was a tightly condensed siRNA-peptide inner core in turn surrounded by the disordered lipid layer and thin HA coating from which the EGFR-targeted amino acid sequences of YHWYGYTPQNVI partially protrude outside of cell surfaces. Both HA and YHWYGYTPQNVI anchored on HLPR were responsible for targeting CD44 and EGFR overexpressed on the tumor cell surfaces, respectively. HLPR was relatively stable in the blood circulation and reached the tumor tissue in vivo through passive and active targeting. Then HLPR entered tumor cells mainly through EGFR-mediated pathway followed by the separation of HA from the remaining parts of nanocomplexes. The HA-uncoated complexes escaped the endosome through the membrane fusion function of DOPE and released cargoes (siRNA and peptide/siRNA) in the cytoplasm. HLPR significantly inhibited the growth of implanted subcutaneous liver tumors without toxicity.
Assuntos
Carcinoma Hepatocelular/terapia , Sistemas de Liberação de Medicamentos , Receptores de Hialuronatos/antagonistas & inibidores , Neoplasias Hepáticas/terapia , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Receptores de Hialuronatos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Nanopartículas/química , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Sustained drug delivery is a large unmet clinical need in glaucoma. Here, we incorporated a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor, CCG-222740, into slow release large unilamellar vesicles derived from the liposomes DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and tested their effects in vitro and in vivo. RESULTS: The vesicles were spherical particles of around 130 nm and were strongly cationic. A large amount of inhibitor could be incorporated into the vesicles. We showed that the nanocarrier CCG-222740 formulation gradually released the inhibitor over 14 days using high performance liquid chromatography. Nanocarrier CCG-222740 significantly decreased ACTA2 gene expression and was not cytotoxic in human conjunctival fibroblasts. In vivo, nanocarrier CCG-222740 doubled the bleb survival from 11.0 ± 0.6 days to 22.0 ± 1.3 days (p = 0.001), decreased conjunctival scarring and did not have any local or systemic adverse effects in a rabbit model of glaucoma filtration surgery. CONCLUSIONS: Our study demonstrates proof-of-concept that a nanocarrier-based formulation efficiently achieves a sustained release of a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor and prevents conjunctival fibrosis in an established rabbit model of glaucoma filtration surgery.
Assuntos
Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos , Fator de Resposta Sérica/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Doenças da Túnica Conjuntiva/tratamento farmacológico , Feminino , Fibroblastos/efeitos dos fármacos , Fibrose/tratamento farmacológico , Humanos , Lipossomos/química , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Coelhos , Distribuição Tecidual , Transativadores/antagonistas & inibidores , Transativadores/químicaRESUMO
RNAi induced by double-stranded small interfering RNA (siRNA) molecules has attracted great attention as a naturally occurring approach to silence gene expression with high specificity. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a master regulator of cytoskeletal gene expression and, thus, represents a promising target to prevent fibrosis. A major hurdle to implementing siRNA therapies is the method of delivery, and we have, thus, optimized lipid-peptide-siRNA (LPR) nanoparticles containing MRTF-B siRNAs as a targeted approach to prevent conjunctival fibrosis. We tested 15 LPR nanoparticle formulations with different lipid compositions, surface charges, and targeting or non-targeting peptides in human conjunctival fibroblasts. In vitro, the LPR formulation of the DOTMA/DOPE lipid with the targeting peptide Y (LYR) was the most efficient in MRTF-B gene silencing and non-cytotoxic compared to the non-targeting formulation. In vivo, subconjunctival administration of LYR nanoparticles containing MRTF-B siRNAs doubled bleb survival in a pre-clinical rabbit model of glaucoma filtration surgery. Furthermore, MRTF-B LYR nanoparticles reduced the MRTF-B mRNA by 29.6% in rabbit conjunctival tissues, which led to significantly decreased conjunctival scarring with no adverse side effects. LYR-mediated delivery of siRNA shows promising results to increase bleb survival and to prevent conjunctival fibrosis after glaucoma filtration surgery.
Assuntos
Fibrose/etiologia , Fibrose/prevenção & controle , Glaucoma/complicações , Glaucoma/genética , Nanoestruturas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Fenômenos Biofísicos , Biópsia , Modelos Animais de Doenças , Fibroblastos/metabolismo , Cirurgia Filtrante/efeitos adversos , Cirurgia Filtrante/métodos , Inativação Gênica , Glaucoma/patologia , Glaucoma/cirurgia , Humanos , Lipossomos , Nanopartículas , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Peptídeos/química , CoelhosRESUMO
INTRODUCTION: Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. METHODS: We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (Vt), short circuit current (Isc), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. RESULTS: Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and ßENaC mRNA by 30%. Transfections reduced Vt, the amiloride-sensitive Isc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. CONCLUSION: Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo.
Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Canais Epiteliais de Sódio/genética , Inativação Gênica , RNA Interferente Pequeno , Transfecção/métodos , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Camundongos , NanopartículasRESUMO
Importance: Postsurgical fibrosis is a critical determinant of the long-term success of glaucoma surgery, but no reliable biomarkers are currently available to stratify the risk of scarring. Objective: To compare the clinical phenotype of patients with conjunctival fibrosis after glaucoma surgery with candidate gene expression tissue biomarkers of fibrosis. Design, Setting, and Participants: In this cross-sectional study, 42 patients were recruited at the time of glaucoma surgery at the Moorfields Eye Hospital from September 1, 2014, to September 1, 2016. The participants were divided into those with fibrosis and those without fibrosis. Main Outcomes and Measures: Genotype-phenotype correlations of the IL6 or PRG4 gene and detailed clinical phenotype. The IL6 and PRG4 protein expression in conjunctival tissues was also assessed using in situ immunohistochemical analysis. Central bleb area, maximal bleb area, and bleb height were graded on a scale of 1 to 5 (1 indicating 0%; 2, 25%; 3, 50%; 4, 75%; and 5, 100%). Bleb vascularity was graded on a scale of 1 to 5 (1 indicating avascularity; 2, normal; 3, mild; 4, moderate; and 5, severe hyperemia). Results: A total of 42 patients were recruited during the study period; 28 participants (67%) had previously undergone glaucoma surgery (fibrotic group) (mean [SD] age, 43.8 [3.6 years]; 16 [57%] female; 22 [79%] white), and 14 participants (33%) had not previously undergone glaucoma surgery (nonfibrotic group) (mean [SD] age, 47.7 [6.9] years; 4 [29%] female; 9 [64%] white). The fibrotic group had marked bleb scarring and vascularization and worse logMAR visual acuity. The mean (SD) grades were 1.4 (0.1) for central bleb area, 1.4 (0.1) for bleb height, and 3.4 (0.2) for bleb vascularity. The IL6 gene was upregulated in fibrotic cell lines (mean, 0.040) compared with nonfibrotic cell lines (mean, 0.011) (difference, 0.029; 95% CI, 0.015-0.043; P = .003). The PRG4 gene was also downregulated in fibrotic cell lines (0.002) compared with nonfibrotic cell lines (mean, 0.109; difference, 0.107; 95% CI, 0.104-0.110; P = .03). The study found a strong correlation between the IL6 gene and the number of glaucoma operations (r = 0.94, P < .001) and logMAR visual acuity (r = 0.64, P = .03). A moderate correlation was found between the PRG4 gene and the number of glaucoma operations (r = -0.72, P = .005) and logMAR visual acuity (r = -0.62, P = .03). Conclusions and Relevance: IL6 and PRG4 represent potential novel tissue biomarkers of disease severity and prognosis in conjunctival fibrosis after glaucoma surgery. Future longitudinal studies with multiple postoperative measures are needed to validate the effect of these potential biomarkers of fibrosis.
Assuntos
Túnica Conjuntiva/patologia , Cirurgia Filtrante/efeitos adversos , Regulação da Expressão Gênica , Glaucoma/cirurgia , Interleucina-6/genética , Complicações Pós-Operatórias/genética , Proteoglicanas/genética , Adulto , Biomarcadores/metabolismo , Linhagem Celular , Túnica Conjuntiva/metabolismo , Estudos Transversais , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Genótipo , Humanos , Imuno-Histoquímica , Interleucina-6/biossíntese , Masculino , Pessoa de Meia-Idade , Fenótipo , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Estudos Prospectivos , Proteoglicanas/biossíntese , RNA/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Fibrosis-related events play a part in most blinding diseases worldwide. However, little is known about the mechanisms driving this complex multifactorial disease. Here we have carried out the first genome-wide RNA-Sequencing study in human conjunctival fibrosis. We isolated 10 primary fibrotic and 7 non-fibrotic conjunctival fibroblast cell lines from patients with and without previous glaucoma surgery, respectively. The patients were matched for ethnicity and age. We identified 246 genes that were differentially expressed by over two-fold and p < 0.05, of which 46 genes were upregulated and 200 genes were downregulated in the fibrotic cell lines compared to the non-fibrotic cell lines. We also carried out detailed gene ontology, KEGG, disease association, pathway commons, WikiPathways and protein network analyses, and identified distinct pathways linked to smooth muscle contraction, inflammatory cytokines, immune mediators, extracellular matrix proteins and oncogene expression. We further validated 11 genes that were highly upregulated or downregulated using real-time quantitative PCR and found a strong correlation between the RNA-Seq and qPCR results. Our study demonstrates that there is a distinct fibrosis gene signature in the conjunctiva after glaucoma surgery and provides new insights into the mechanistic pathways driving the complex fibrotic process in the eye and other tissues.
Assuntos
Doenças da Túnica Conjuntiva/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Glaucoma/cirurgia , Análise de Sequência de RNA/métodos , Adulto , Idoso , Linhagem Celular , Doenças da Túnica Conjuntiva/etiologia , Feminino , Fibroblastos/citologia , Fibrose , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Ontologia Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
The inhibition of ENaC may have therapeutic potential in CF airways by reducing sodium hyperabsorption, restoring lung epithelial surface fluid levels, airway hydration and mucociliary function. The challenge has been to deliver siRNA to the lung with sufficient efficacy for a sustained therapeutic effect. We have developed a self-assembling nanocomplex formulation for siRNA delivery to the airways that consists of a liposome (DOTMA/DOPE; L), an epithelial targeting peptide (P) and siRNA (R). LPR formulations were assessed for their ability to silence expression of the transcript of the gene encoding the α-subunit of the sodium channel ENaC in cell lines and primary epithelial cells, in submerged cultures or grown in air-liquid interface conditions. LPRs, containing 50 nM or 100 nM siRNA, showed high levels of silencing, particularly in primary airway epithelial cells. When nebulised these nanocomplexes still retained their biophysical properties and transfection efficiencies. The silencing ability was determined at protein level by confocal microscopy and western blotting. In vivo data demonstrated that these nanoparticles had the ability to silence expression of the α-ENaC subunit gene. In conclusion, these findings show that LPRs can modulate the activity of ENaC and this approach might be promising as co-adjuvant therapy for cystic fibrosis.
Assuntos
Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Técnicas de Transferência de Genes , Nanopartículas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transdução Genética , Linhagem Celular , Células Cultivadas , Fibrose Cística/genética , Fibrose Cística/terapia , Técnicas de Silenciamento de Genes , Inativação Gênica , Terapia Genética , Lipossomos/química , Microscopia Confocal , Peptídeos/química , Interferência de RNA , RNA Interferente Pequeno/química , TransfecçãoRESUMO
Gene therapy for cystic fibrosis using non-viral, plasmid-based formulations has been the subject of intensive research for over two decades but a clinically viable product has yet to materialise in large part due to inefficient transgene expression. Minicircle DNA give enhanced and more persistent transgene expression compared to plasmid DNA in a number of organ systems but has not been assessed in the lung. In this study we compared minicircle DNA with plasmid DNA in transfections of airway epithelial cells. In vitro, luciferase gene expression from minicircles was 5-10-fold higher than with plasmid DNA. In eGFP transfections in vitro both the mean fluorescence intensity and percentage of cells transfected was 2-4-fold higher with minicircle DNA. Administration of equimolar amounts of DNA to mouse lungs resulted in a reduced inflammatory response and more persistent transgene expression, with luciferase activity persisting for 2 weeks from minicircle DNA compared to plasmid formulations. Transfection of equal mass amounts of DNA in mouse lungs resulted in a 6-fold increase in transgene expression in addition to more persistent transgene expression. Our findings have clear implications for gene therapy of airway disorders where plasmid DNA transfections have so far proven inefficient in clinical trials.