Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heart Rhythm ; 19(2): 295-305, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34662707

RESUMO

BACKGROUND: Ventricular fibrillation (VF) is characterized by multiple wavelets and rotors. No equation to predict the number of rotors and wavelets observed during fibrillation has been validated in human VF. OBJECTIVE: The purpose of this study was to test the hypothesis that a single equation derived from a Markov M/M/∞ birth-death process could predict the number of rotors and wavelets occurring in human clinical VF. METHODS: Epicardial induced VF (256-electrode) recordings obtained from patients undergoing cardiac surgery were studied (12 patients; 62 epochs). Rate constants for phase singularity (PS) (which occur at the pivot points of rotors) and wavefront (WF) formation and destruction were derived by fitting distributions to PS and WF interformation and lifetimes. These rate constants were combined in an M/M/∞ governing equation to predict the number of PS and WF in VF episodes. Observed distributions were compared to those predicted by the M/M/∞ equation. RESULTS: The M/M/∞ equation accurately predicted average PS and WF number and population distribution, demonstrated in all epochs. Self-terminating episodes of VF were distinguished from VF episodes requiring termination by a trend toward slower PS destruction, slower rates of PS formation, and a slower mixing rate of the VF process, indicated by larger values of the second largest eigenvalue modulus of the M/M/∞ birth-death matrix. The longest-lasting PS (associated with rotors) had shorter interactivation time intervals compared to shorter-lasting PS lasting <150 ms (∼1 PS rotation in human VF). CONCLUSION: The M/M/∞ equation explains the number of wavelets and rotors observed, supporting a paradigm of VF based on statistical fibrillatory dynamics.


Assuntos
Morte Súbita Cardíaca/etiologia , Fibrilação Ventricular/fisiopatologia , Procedimentos Cirúrgicos Cardíacos , Mapeamento Epicárdico , Feminino , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Cadeias de Markov , Modelos Cardiovasculares
2.
Heart Rhythm ; 18(8): 1406-1413, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33932588

RESUMO

BACKGROUND: Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear. OBJECTIVE: The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology. METHODS: In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models. RESULTS: Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01-0.38] ms/%; P = .04) and increased local ARI dispersion (effect size -0.13 [-0.23 to -0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01). CONCLUSION: Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias.


Assuntos
Arritmias Cardíacas/fisiopatologia , Eletrocardiografia , Retroalimentação , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia , Contração Miocárdica/fisiologia , Idoso , Arritmias Cardíacas/diagnóstico , Ecocardiografia , Feminino , Ventrículos do Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade
3.
Europace ; 21(6): 981-989, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753421

RESUMO

AIMS: Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo. METHODS AND RESULTS: We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans. CONCLUSION: Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.


Assuntos
Arritmias Cardíacas/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Sistema de Condução Cardíaco/fisiopatologia , Potenciais de Ação , Biópsia , Calsequestrina/metabolismo , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Rianodina/metabolismo
4.
Europace ; 21(4): 616-625, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500897

RESUMO

AIMS: Differences of action potential duration (APD) in regions of myocardial scar and their borderzones are poorly defined in the intact human heart. Heterogeneities in APD may play an important role in the generation of ventricular tachycardia (VT) by creating regions of functional block. We aimed to investigate the transmural and planar differences of APD in patients admitted for VT ablation. METHODS AND RESULTS: Six patients (median age 53 years, five male); (median ejection fraction 35%), were studied. Endocardial (Endo) and epicardial (Epi) 3D electroanatomic mapping was performed. A bipolar voltage of <0.5 mV was defined as dense scar, 0.5-1.5 mV as scar borderzone, and >1.5 mV as normal. Decapolar catheters were positioned transmurally across the scar borderzone to assess differences of APD and repolarization time (RT) during restitution pacing from Endo and Epi. Epi APD was 173 ms in normal tissue vs. 187 ms at scar borderzone and 210 ms in dense scar (P < 0.001). Endocardial APD was 210 ms in normal tissue vs. 222 ms in the scar borderzone and 238 ms in dense scar (P < 0.01). This resulted in significant transmural RT dispersion (ΔRT 22 ms across dense transmural scar vs. 5 ms in normal transmural tissue, P < 0.001), dependent on the scar characteristics in the Endo and Epi, and the pacing site. CONCLUSION: Areas of myocardial scar have prolonged APD compared with normal tissue. Heterogeneity of regional transmural and planar APD result in localized dispersion of repolarization, which may play an important role in initiating VT.


Assuntos
Potenciais de Ação , Ablação por Cateter , Cicatriz/fisiopatologia , Endocárdio/fisiopatologia , Pericárdio/fisiopatologia , Taquicardia Ventricular/cirurgia , Adulto , Idoso , Displasia Arritmogênica Ventricular Direita/complicações , Cardiomiopatias/complicações , Cicatriz/etiologia , Desfibriladores Implantáveis , Técnicas Eletrofisiológicas Cardíacas , Mapeamento Epicárdico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/complicações , Miocardite/complicações , Miocárdio , Recidiva , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo
5.
PLoS One ; 11(9): e0161765, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588688

RESUMO

BACKGROUND: The restitution of the action potential duration (APDR) and conduction velocity (CVR) are mechanisms whereby cardiac excitation and repolarization adapt to changes in heart rate. They modulate the vulnerability to dangerous arrhythmia, but the mechanistic link between restitution and arrhythmogenesis remains only partially understood. METHODS: This paper provides an experimental and theoretical study of repolarization and excitation restitution properties and their interactions in the intact human epicardium. The interdependence between excitation and repolarization dynamic is studied in 8 patients (14 restitution protocols, 1722 restitution curves) undergoing global epicardial mapping with multi-electrode socks before open heart surgery. A mathematical description of the contribution of both repolarization and conduction dynamics to the steepness of the APDR slope is proposed. RESULTS: This study demonstrates that the APDR slope is a function of both activation and repolarization dynamics. At short cycle length, conduction delay significantly increases the APDR slope by interacting with the diastolic interval. As predicted by the proposed mathematical formulation, the APDR slope was more sensitive to activation time prolongation than to the simultaneous shortening of repolarization time. A steep APDR slope was frequently identified, with 61% of all cardiac sites exhibiting an APDR slope > 1, suggesting that a slope > 1 may not necessarily promote electrical instability in the human epicardium. APDR slope did not change for different activation or repolarization times, and it was not a function of local baseline APD. However, it was affected by the spatial organization of electrical excitation, suggesting that in tissue APDR is not a unique function of local electrophysiological properties. Spatial heterogeneity in both activation and repolarization restitution contributed to the increase in the modulated dispersion of repolarization, which for short cycle length was as high as 250 ms. Heterogeneity in conduction velocity restitution can translate into both activation and repolarization dispersion and increase cardiac instability. The proposed mathematical formulation shows an excellent agreement with the experimental data (correlation coefficient r = 0.94) and provides a useful tool for the understanding of the complex interactions between activation and repolarization restitution properties as well as between their measurements.


Assuntos
Potenciais de Ação/fisiologia , Sistema de Condução Cardíaco/fisiologia , Coração/fisiologia , Modelos Cardiovasculares , Pericárdio/fisiologia , Humanos
6.
J Mol Cell Cardiol ; 97: 93-105, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27178727

RESUMO

Ventricular repolarization dynamics are crucial to arrhythmogenesis. Low-frequency oscillations of repolarization have recently been reported in humans and the magnitude of these oscillations proposed to be a strong predictor of sudden cardiac death. Available evidence suggests a role of the sympathetic nervous system. We have used biophysically detailed models integrating ventricular electrophysiology, calcium dynamics, mechanics and ß-adrenergic signaling to investigate the underlying mechanisms. The main results were: (1) Phasic beta-adrenergic stimulation (ß-AS) at a Mayer wave frequency between 0.03 and 0.15Hz resulted in a gradual decrease of action potential (AP) duration (APD) with concomitant small APD oscillations. (2) After 3-4minutes of phasic ß-AS, the mean APD adapted and oscillations of APD became apparent. (3) Phasic changes in haemodynamic loading at the same Mayer wave frequency (a known accompaniment of enhanced sympathetic nerve activity), simulated as variations in the sarcomere length, also induced APD oscillations. (4) The effect of phasic ß-AS and haemodynamic loading on the magnitude of APD oscillations was synergistic. (5) The presence of calcium overload and reduced repolarization reserve further enhanced the magnitude of APD oscillations and was accompanied by afterdepolarizations and/or spontaneous APs. In conclusion, low-frequency oscillations of repolarization recently reported in humans were induced by phasic ß-AS and phasic mechanical loading, which acted synergistically, and were greatly enhanced by disease-associated conditions, leading to arrhythmogenic events.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Estresse Mecânico , Função Ventricular/efeitos dos fármacos , Cálcio/metabolismo , Simulação por Computador , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fenômenos Eletrofisiológicos , Hemodinâmica , Humanos , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia
7.
PLoS One ; 11(3): e0149342, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934736

RESUMO

Exit sites associated with scar-related reentrant arrhythmias represent important targets for catheter ablation therapy. However, their accurate location in a safe and robust manner remains a significant clinical challenge. We recently proposed a novel quantitative metric (termed the Reentry Vulnerability Index, RVI) to determine the difference between activation and repolarisation intervals measured from pairs of spatial locations during premature stimulation to accurately locate the critical site of reentry formation. In the clinic, the method showed potential to identify regions of low RVI corresponding to areas vulnerable to reentry, subsequently identified as ventricular tachycardia (VT) circuit exit sites. Here, we perform an in silico investigation of the RVI metric in order to aid the acquisition and interpretation of RVI maps and optimise its future usage within the clinic. Within idealised 2D sheet models we show that the RVI produces lower values under correspondingly more arrhythmogenic conditions, with even low resolution (8 mm electrode separation) recordings still able to locate vulnerable regions. When applied to models of infarct scars, the surface RVI maps successfully identified exit sites of the reentrant circuit, even in scenarios where the scar was wholly intramural. Within highly complex infarct scar anatomies with multiple reentrant pathways, the identified exit sites were dependent upon the specific pacing location used to compute the endocardial RVI maps. However, simulated ablation of these sites successfully prevented the reentry re-initiation. We conclude that endocardial surface RVI maps are able to successfully locate regions vulnerable to reentry corresponding to critical exit sites during sustained scar-related VT. The method is robust against highly complex and intramural scar anatomies and low resolution clinical data acquisition. Optimal location of all relevant sites requires RVI maps to be computed from multiple pacing locations.


Assuntos
Ablação por Cateter/métodos , Ventrículos do Coração/cirurgia , Cirurgia Assistida por Computador/métodos , Taquicardia Ventricular/cirurgia , Animais , Simulação por Computador , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/patologia , Humanos , Modelos Anatômicos , Coelhos , Taquicardia Ventricular/patologia
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 5672-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26737579

RESUMO

The restitution of the action potential duration (APDR) is a mechanism whereby cardiac excitation and relaxation adapt to changes in heart rate. Several studies, mainly carried out in-vitro and in-silico, have demonstrated that a steep APDR curve is associated with increased vulnerability to fatal arrhythmias. However, the mechanisms that link the steepness of the APDR curve to arrhythmogenesis remain undetermined. Although APDR is known to interact with conduction dynamics, few studies have focused on these interactions. In this paper, an analytical expression of the slope of the APDR is derived. This expression explicitly describes the dependency of the slope of the APDR curve on the activation time and/or conduction velocity changes. The study of this expression shows that conduction dynamics are among the main determinants of the slope of the APDR curve. A small absolute increment in the steepness of the activation time restitution slope can cause the steepness of the APDR slope to dramatically increase. Theoretically, the APDR slope quickly diverges to infinity when the increase in activation time matches the decrease in the pacing interval. High density epicardial mapping performed in a patient undergoing open heart surgery, shows excellent agreement between measures of the slope of the APDR curve and its analytical prediction (linear correlation > 0.95). The in-vivo recordings suggest that activation time restitution is the main determinant of the slope of the APDR curve.


Assuntos
Potenciais de Ação , Frequência Cardíaca , Arritmias Cardíacas , Coração , Sistema de Condução Cardíaco , Humanos
9.
Prog Biophys Mol Biol ; 115(2-3): 252-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972083

RESUMO

Understanding the mechanisms of fatal ventricular arrhythmias is of great importance. In view of the many electrophysiological differences that exist between animal species and humans, the acquisition of basic electrophysiological data in the intact human heart is essential to drive and complement experimental work in animal and in-silico models. Over the years techniques have been developed to obtain basic electrophysiological signals directly from the patients by incorporating these measurements into routine clinical procedures which access the heart such as cardiac catheterisation and cardiac surgery. Early recordings with monophasic action potentials provided valuable information including normal values for the in vivo human heart, cycle length dependent properties, the effect of ischaemia, autonomic nervous system activity, and mechano-electric interaction. Transmural recordings addressed the controversial issue of the mid myocardial "M" cell. More recently, the technique of multielectrode mapping (256 electrodes) developed in animal models has been extended to humans, enabling mapping of activation and repolarisation on the entire left and right ventricular epicardium in patients during cardiac surgery. Studies have examined the issue of whether ventricular fibrillation was driven by a "mother" rotor with inhomogeneous and fragmented conduction as in some animal models, or by multiple wavelets as in other animal studies; results showed that both mechanisms are operative in humans. The simpler spatial organisation of human VF has important implications for treatment and prevention. To link in-vivo human electrophysiological mapping with cellular biophysics, multielectrode mapping is now being combined with myocardial biopsies. This technique enables region-specific electrophysiology changes to be related to underlying cellular biology, for example: APD alternans, which is a precursor of VF and sudden death. The mechanism is incompletely understood but related to calcium cycling and APD restitution. Multielectrode sock mapping during incremental pacing enables epicardial sites to be identified which exhibit marked APD alternans and sites where APD alternans is absent. Whole heart electrophysiology is assessed by activation repolarisation mapping and analysis is performed immediately on-site in order to guide biopsies to specific myocardial sites. Samples are analysed for ion channel expression, Ca(2+)-handling proteins, gap junctions and extracellular matrix. This new comprehensive approach to bridge cellular and whole heart electrophysiology allowed to identify 20 significant changes in mRNA for ion channels Ca(2+)-handling proteins, a gap junction channel, a Na(+)-K(+) pump subunit and receptors (particularly Kir 2.1) between the positive and negative alternans sites.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Fibrilação Ventricular/fisiopatologia , Mapeamento Potencial de Superfície Corporal/tendências , Simulação por Computador , Previsões , Sistema de Condução Cardíaco/patologia , Ventrículos do Coração/patologia , Miócitos Cardíacos/citologia , Fibrilação Ventricular/patologia
10.
Front Physiol ; 3: 235, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22783201

RESUMO

Abnormal ventricular wall motion is a strong clinical predictor of sudden, arrhythmic, cardiac death. Dispersion in repolarization is a prerequisite for the initiation of re-entrant arrhythmia. We hypothesize that regionally decreased wall motion is associated with heterogeneity of repolarization. We measured local activation times, activation-recovery intervals (ARIs, surrogate for action potential duration), and repolarization times using a multielectrode grid at nine segments on the left ventricular epicardium in 23 patients undergoing coronary artery surgery. Regional wall motion was simultaneously assessed using intraoperative transesophageal echocardiography. Three groups were discriminated: (1) Patients with normal wall motion (n = 11), (2) Patients with one or more hypokinetic segments (n = 6), (3) Patients with one or more akinetic or dyskinetic segments (n = 6). The average ARI was similar in all groups (251 ± 3.7 ms, ±SEM). Dispersion of ARIs between the nine segments was significantly increased in the hypokinetic (84 ± 7.4 ms, p < 0.005) and akinetic/dyskinetic group (94 ± 3.5 ms, p < 0.0005) compared with the normal group (49 ± 5.1 ms), independent from the presence of myocardial infarction. Repolarization heterogeneity occurred primarily in the normally contracting regions of the hearts with abnormal wall motion. An almost maximal increased dispersion of repolarization was observed when there was only a single hypokinetic segment. We conclude that inhomogeneous wall motion abnormality of even moderate severity is associated with increased repolarization inhomogeneity, independent from the presence of infarction.

11.
Circ Arrhythm Electrophysiol ; 4(5): 684-91, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21841193

RESUMO

BACKGROUND: Ischemic ventricular fibrillation in experimental models has been shown to progress through a series of stages. Progression of ischemic VF in the in vivo human heart has not been determined. METHODS AND RESULTS: We studied 10 patients undergoing cardiac surgery. Ventricular fibrillation was induced by burst pacing. After 30 seconds, global myocardial ischemia was induced by aortic cross-clamp and maintained for 2.5 minutes, followed by coronary reflow. Epicardial activity was sampled (1 kHz) with a sock that contained 256 unipolar contact electrodes. Dominant frequencies were calculated with a fast Fourier transform with a moving window. The locations of phase singularities and activation wavefronts were identified at 10-ms intervals. Preischemic (perfused) ventricular fibrillation was maintained by a disorganized mix of large and small wavefronts. During global myocardial ischemia, mean dominant frequencies decreased from 6.4 to 4.7 Hz at a rate of -0.011±0.002 Hz s(-1) (P<0.001) and then increased rapidly to 7.4 Hz within 30 seconds of reflow. In contrast, the average number of epicardial phase singularities increased during ischemia from 7.7 to 9.7 at a rate of 0.013±0.005 phase singularities per second (P<0.01) and remained unchanged during reflow, at 10.3. The number of wavefronts showed a similar time course to the number of phase singularities. CONCLUSIONS: In human ventricular fibrillation, we found an increase in complexity of electric activation patterns during global myocardial ischemia, and this was not reversed during reflow despite an increase in activation rate.


Assuntos
Sistema de Condução Cardíaco/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Reperfusão Miocárdica , Fibrilação Ventricular/fisiopatologia , Adulto , Idoso , Animais , Modelos Animais de Doenças , Eletrodos , Mapeamento Epicárdico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pericárdio/fisiopatologia , Fatores de Tempo
12.
Circulation ; 114(6): 536-42, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16880326

RESUMO

BACKGROUND: The mechanisms that sustain ventricular fibrillation (VF) in the human heart remain unclear. Experimental models have demonstrated either a periodic source (mother rotor) or multiple wavelets as the mechanism underlying VF. The aim of this study was to map electrical activity from the entire ventricular epicardium of human hearts to establish the relative roles of these mechanisms in sustaining early human VF. METHODS AND RESULTS: In 10 patients undergoing cardiac surgery, VF was induced by burst pacing, and 20 to 40 seconds of epicardial activity was sampled (1 kHz) with a sock containing 256 unipolar contact electrodes connected to a UnEmap system. Signals were interpolated from the electrode sites to a fine regular grid (100x100 points), and dominant frequencies (DFs) were calculated with a fast Fourier transform with a moving 4096-ms window (10-ms increments). Epicardial phase was calculated at each grid point with the Hilbert transform, and phase singularities and activation wavefronts were identified at 10-ms intervals. Early human VF was sustained by large coherent wavefronts punctuated by periods of disorganized wavelet behavior. The initial fitted DF intercept was 5.11 +/- 0.25 (mean +/- SE) Hz (P < 0.0001), and DF increased at a rate of 0.018 +/- 0.005 Hz/s (P < 0.01) during VF, whereas combinations of homogeneous, heterogeneous, static, and mobile DF domains were observed for each of the patients. Epicardial reentry was present in all fibrillating hearts, typically with low numbers of phase singularities. In some cases, persistent phase singularities interacted with multiple complex wavelets; in other cases, VF was driven at times by a single reentrant wave that swept the entire epicardium for several cycles. CONCLUSIONS: Our data support both the mother rotor and multiple wavelet mechanisms of VF, which do not appear to be mutually exclusive in the human heart.


Assuntos
Eletrofisiologia , Sistema de Condução Cardíaco/fisiopatologia , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Mapeamento Potencial de Superfície Corporal , Ponte Cardiopulmonar , Eletrocardiografia , Eletrodos , Feminino , Ventrículos do Coração/inervação , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Pericárdio/fisiopatologia , Periodicidade , Fibrilação Ventricular/terapia
13.
Toxicol Appl Pharmacol ; 216(3): 416-25, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16926038

RESUMO

Heme oxygenase-1 (HO-1) is one of several enzymes induced by hepatotoxicants, and is thought to have an important protective role against cellular stress during liver inflammation and injury. The objective of the present study was to evaluate the role of HO-1 in estradiol-induced liver injury. A single dose of ethinyl estradiol (500 mg/kg, po) resulted in mild liver injury. Repeated administration of ethinyl estradiol (500 mg/kg/day for 4 days, po) resulted in no detectable liver injury or dysfunction. Using RT-PCR analysis, we demonstrate that HO-1 gene expression in whole liver tissue is elevated (>20-fold) after the single dose of ethinyl estradiol. The number and intensity of HO-1 immunoreactive macrophages were increased after the single dose of ethinyl estradiol. HO-1 expression was undetectable in hepatic parenchymal cells from rats receiving Methocel control or a single dose of ethinyl estradiol, however cytosolic HO-1 immunoreactivity in these cells after repeated dosing of ethinyl estradiol was pronounced. The increases in HO-1 mRNA and HO-1 immunoreactivity following administration of a single dose of ethinyl estradiol suggested that this enzyme might be responsible for the observed protection of the liver during repeated dosing. To investigate the effect of HO-1 expression on ethinyl estradiol-induced hepatotoxicity, rats were pretreated with hemin (50 micromol/kg, ip, a substrate and inducer of HO-1), with tin protoporphyrin IX (60 micromol/kg, ip, an HO-1 inhibitor), or with gadolinium chloride (10 mg/kg, iv, an inhibitor/toxin of Kupffer cells) 24 h before ethinyl estradiol treatment. Pretreatment with modulators of HO-1 expression and activity had generally minimal effects on ethinyl estradiol-induced liver injury. These data suggest that HO-1 plays a limited role in antioxidant defense against ethinyl estradiol-induced oxidative stress and hepatotoxicity, and suggests that other coordinately induced enzymes are responsible for protection observed with repeated administration of high doses of this compound.


Assuntos
Antioxidantes/metabolismo , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Heme Oxigenase-1/biossíntese , Fígado/enzimologia , Animais , Biomarcadores , Indução Enzimática/efeitos dos fármacos , Feminino , Gadolínio/farmacologia , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/antagonistas & inibidores , Hemina/farmacologia , Imuno-Histoquímica , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Metaloporfirinas/farmacologia , Protoporfirinas/farmacologia , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Elementos de Resposta , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Exp Physiol ; 91(2): 339-54, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16452121

RESUMO

Steep action potential duration (APD) restitution has been shown to facilitate wavebreak and ventricular fibrillation. The global APD restitution properties in cardiac patients are unknown. We report a combined clinical electrophysiology and computer modelling study to: (1) determine global APD restitution properties in cardiac patients; and (2) examine the interaction of the observed APD restitution with known arrhythmia mechanisms. In 14 patients aged 52-85 years undergoing routine cardiac surgery, 256 electrode epicardial mapping was performed. Activation-recovery intervals (ARI; a surrogate for APD) were recorded over the entire ventricular surface. Mono-exponential restitution curves were constructed for each electrode site using a standard S1-S2 pacing protocol. The median maximum restitution slope was 0.91, with 27% of all electrode sites with slopes<0.5, 29% between 0.5 and 1.0, and 20% between 1.0 and 1.5. Eleven per cent of restitution curves maintained slope>1 over a range of diastolic intervals of at least 30 ms; and 0.3% for at least 50 ms. Activation-recovery interval restitution was spatially heterogeneous, showing regional organization with multiple discrete areas of steep and shallow slope. We used a simplified computer model of 2-D cardiac tissue to investigate how heterogeneous APD restitution can influence vulnerability to, and stability of re-entry. Our model showed that heterogeneity of restitution can act as a potent arrhythmogenic substrate, as well as influencing the stability of re-entrant arrhythmias. Global epicardial mapping in humans showed that APD restitution slopes were organized into regions of shallow and steep slopes. This heterogeneous organization of restitution may provide a substrate for arrhythmia.


Assuntos
Mapeamento Potencial de Superfície Corporal , Cardiopatias/fisiopatologia , Coração/fisiopatologia , Modelos Cardiovasculares , Potenciais de Ação/fisiologia , Idoso , Idoso de 80 Anos ou mais , Insuficiência da Valva Aórtica/fisiopatologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Simulação por Computador , Doença das Coronárias/fisiopatologia , Feminino , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias/tratamento farmacológico , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
15.
Prog Biophys Mol Biol ; 82(1-3): 243-54, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12732283

RESUMO

Myocardial cells isolated from different depths of the ventricular wall show substantial differences in action potential duration. Whether these electrophysiological differences are present in vivo when the cells are well coupled is a subject of ongoing controversy. This article provides a brief review and includes experimental evidence derived from patients undergoing cardiac surgery.


Assuntos
Ventrículos do Coração/patologia , Função Ventricular , Potenciais de Ação , Animais , Cães , Eletrofisiologia , Endocárdio/patologia , Humanos , Contração Miocárdica , Isquemia Miocárdica , Miocárdio/patologia , Pericárdio/fisiologia , Fatores de Tempo , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA