Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 69(6): 1696-1704, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30950782

RESUMO

Among the species Mycobacterium kansasii, seven subtypes have been previously reported based on the PCR and the restriction fragment length polymorphism of the gene hsp65. Here, we used whole-genome sequencing to refine M. kansasii taxonomy and correct multiple inconsistencies. Average nucleotide identity (ANI) values between M. kansasii subtypes ranged from 88.4 to 94.2 %, lower than the accepted 95-96 % cut-off for species delineation. In addition, Mycobacterium gastri was closer to the M. kansasii subtypes 1, 2, 3, 4 and 5 than M. kansasii subtype 6. The recently described species Mycobacterium persicum shared 99.77 % ANI with M. kansasii subtype 2. Consistent with the ANI results, the digital DNA-DNA hybridization value was below the 70 % threshold for species delineation between subtypes and above it within subtypes as well as between subtype 2 and M. persicum. Furthermore, core-genome phylogeny confirmed the current M. kansasii species to be polyphyletic. Hence, we propose (i) Mycobacterium pseudokansasii sp. nov., replacing subtype 3, with the type strain MK142T(=CCUG 72128T=DSM 107152T), (ii) Mycobacterium innocens sp. nov., replacing subtype 5, with the type strain MK13T (=CCUG 72126T=DSM 107161T), and (iii) Mycobacterium attenuatum sp. nov., replacing subtype 6, with the type strain MK41T(=CCUG 72127T=DSM 107153T). Subtype 4 represents a new species-level lineage based on the genomic data but no strain was available. No genome sequence or strain was available for subtype 7. The proposed nomenclature will facilitate the identification of the most pathogenic subtype 1 as M. kansasii by clinicians while the new species names suggest the attenuated pathogenicity of the other subtypes.


Assuntos
Mycobacterium kansasii/classificação , Mycobacterium/classificação , Filogenia , Sequenciamento Completo do Genoma , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Análise de Sequência de DNA
2.
Front Microbiol ; 9: 3184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671031

RESUMO

Bacteria belonging to the genus Mycobacterium are predominantly responsible for pulmonary diseases; most notably Mycobacterium tuberculosis causes granulomatous pulmonary infections. Here we describe a novel slow growing mycobacterial species isolated from respiratory samples from five patients, four with underlying pulmonary disease. The isolates were characterized by biochemical and molecular techniques, including whole genome sequencing. Biochemical characteristics generally match those of M. marinum and M. ulcerans; however, the most striking difference of the new species is its ability to grow at 37°C. The new species was found to grow in human macrophages, but not amoebae, suggesting a pathogenic rather than an environmental lifestyle. Phylogenetic analysis reveals a deep-rooting relationship to M. marinum and M. ulcerans. A complete genome sequence was obtained through combining short and long-read sequencing, providing a genome of 5.6 Mb. The genome appears to be highly intact, syntenic with that of M. marinum, with very few insertion sequences. A vast array of virulence factors includes 283 PE/PPE surface-associated proteins, making up 10% of the coding capacity, and 22 non-ribosomal peptide synthase clusters. A comparison of six clinical isolates from the five patients shows that they differ by up to two single nucleotide polymorphisms, suggesting a common source of infection. Our findings are in accordance with the recognition of a new taxonomic entity. We propose the name M. basiliense, as all isolates were found in patients from the Basel area of Switzerland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA