Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(5): 1028-1034, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668705

RESUMO

The 3CL protease (3CLpro) is a viral cysteine protease of SARS-CoV-2 and is responsible for the main processing of the viral polyproteins involved in viral replication and proliferation. Despite the importance of 3CLpro as a drug target, the intracellular dynamics of active 3CLpro, including its expression and subcellular localization in SARS-CoV-2-infected cells, are poorly understood. Herein, we report an activity-based probe (ABP) with a clickable alkyne and an irreversible warhead for the SARS-CoV-2 3CL protease. We designed and synthesized two ABPs that contain a chloromethyl ketone (probe 2) or 2,6-dichlorobenzoyloxymethyl ketone (probe 3) reactive group at the P1' site. Labeling of recombinant 3CLpro by the ABPs in the purified and proteome systems revealed that probe 3 displayed ligand-directed and selective labeling against 3CLpro. Labeling of transiently expressed active 3CLpro in COS-7 cells also validated the good target selectivity of probe 3 for 3CLpro. We finally demonstrated that endogenously expressed 3CLpro in SARS-CoV-2-infected cells can be detected by fluorescence microscopy imaging using probe 3, suggesting that active 3CLpro at 5 h postinfection is localized in the juxtanuclear region. To the best of our knowledge, this is the first report investigating the subcellular localization of active 3CLpro by using ABPs. We believe that probe 3 will be a useful chemical tool for acquiring important biological knowledge of active 3CLpro in SARS-CoV-2-infected cells.


Assuntos
Proteases 3C de Coronavírus , SARS-CoV-2 , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/metabolismo , Chlorocebus aethiops , Animais , Células COS , Humanos , Cetonas/química , Cetonas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Sondas Moleculares/química
2.
J Pept Sci ; 30(1): e3532, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37423887

RESUMO

Natural macrocyclic peptides derived from microorganisms are medicinal resources that are important for the development of new therapeutic agents. Most of these molecules are biosynthesized by a nonribosomal peptide synthetase (NRPS). The thioesterase (TE) domain in NRPS is responsible for the macrocyclization of mature linear peptide thioesters in a final biosynthetic step. NRPS-TEs can cyclize synthetic linear peptide analogs and can be utilized as biocatalysts for the preparation of natural product derivatives. Although the structures and enzymatic activities of TEs have been investigated, the substrate recognition and substrate-TE interaction during the macrocyclization step are still unknown. To understand the TE-mediated macrocyclization, here we report the development of a substrate-based analog with mixed phosphonate warheads, which can react irreversibly with the Ser residue at the active site of TE. We have demonstrated that the tyrocidine A linear peptide (TLP) with a p-nitrophenyl phosphonate (PNP) enables efficient complex formation with tyrocidine synthetase C (TycC)-TE containing tyrocidine synthetase.


Assuntos
Peptídeos , Tirocidina , Peptídeo Sintases/química , Tirocidina/química
3.
Yakugaku Zasshi ; 143(12): 989-995, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-38044114

RESUMO

Disulfide bonds in peptides contribute to the immobilization and rigidity of their structures, leading to the expression of biological activity and resistance to metabolic enzymes. In addition, disulfide bonds are important in the construction of conjugates comprising two bioactive molecules such as peptides, sugars and drugs. Therefore, new methods of disulfide bond formation contribute to a more efficient construction of disulfide products. This article reviews studies on development of synthetic methodology for disulfide bond formation by using 3-nitro-2-pyridinesulfenyl (Npys) compounds. We have developed a one-pot solid-phase disulfide ligation (SPDSL) method by using an Npys resin, which can easily afford an asymmetric disulfide bond that is generated using two types of thiol-containing components such as peptides and small molecules. The disulfide-linked conjugation between a hydrophobic molecule and a hydrophilic peptide can be easily prepared. Based on the SPDSL strategy, we also developed a disulfide-driven cyclic peptide synthesis, which represents a new strategy to prepare cyclic peptides from two different fragments. By generating a disulfide bond between two fragments, the entropically favorable intramolecular amide bond formation can be achieved, resulting in the reduction of racemization at the coupling site. We found that methyl 3-nitro-2-pyridinesulfenate (Npys-OMe) functions as a disulfide bond-forming reagent possessing mildly oxidative activity. This reagent enhances intramolecular disulfide bond formation between two thiols for the synthesis of cyclic peptides under mildly acidic conditions. As the applications of Npys-OMe, we demonstrated the disulfide bond formation on thiols-containing peptidyl resin.


Assuntos
Peptídeos Cíclicos , Peptídeos , Peptídeos/química , Peptídeos Cíclicos/química , Fenômenos Químicos , Compostos de Sulfidrila , Indicadores e Reagentes , Dissulfetos/química
4.
Biosci Biotechnol Biochem ; 87(9): 946-953, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37280167

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leukosis, a fatal cattle disease that leads to significant economic losses in the livestock industry. Currently, no effective BLV countermeasures exist, except testing and culling. In this study, we developed a high-throughput fluorogenic assay to evaluate the inhibitory activity of various compounds on BLV protease, an essential enzyme for viral replication. The developed assay method was used to screen a chemical library, and mitorubrinic acid was identified as a BLV protease inhibitor that exhibited stronger inhibitory activity than amprenavir. Additionally, the anti-BLV activity of both compounds was evaluated using a cell-based assay, and mitorubrinic acid was found to exhibit inhibitory activity without cytotoxicity. This study presents the first report of a natural inhibitor of BLV protease-mitorubrinic acid-a potential candidate for the development of anti-BLV drugs. The developed method can be used for high-throughput screening of large-scale chemical libraries.


Assuntos
Vírus da Leucemia Bovina , Peptídeo Hidrolases , Animais , Bovinos , Vírus da Leucemia Bovina/química , Replicação Viral
5.
Chem Pharm Bull (Tokyo) ; 71(6): 435-440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258197

RESUMO

We have developed a new one-pot disulfide-driven cyclic peptide synthesis. The entire process is carried out in the solid phase, thus eliminating complicated work up procedures to remove by-products and unreacted reagents and enabling production of high-purity cyclic disulfide peptides by simple cleavage of a peptidyl resin. The one-pot synthesis of oxytocin was accomplished in this way with an isolated yield of 28% over 13 steps. These include peptide chain elongation from an initial resin, sulfenylation of the protected side chain of a cysteine (Cys) residue, disulfide ligation between thiols in an additional peptide fragment and a 3-nitro-2-pyridinesulfenyl-protected cysteine (Cys(Npys))-containing peptide resin, subsequent intramolecular amide bond formation of the disulfide-connected fragments by an Ag+-promoted thioester method, followed by deprotection and HPLC purification.


Assuntos
Cisteína , Peptídeos Cíclicos , Cisteína/química , Dissulfetos , Peptídeos/química , Compostos de Sulfidrila/química
6.
J Med Chem ; 65(4): 2926-2939, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34313428

RESUMO

The novel coronavirus, SARS-CoV-2, has been identified as the causative agent for the current coronavirus disease (COVID-19) pandemic. 3CL protease (3CLpro) plays a pivotal role in the processing of viral polyproteins. We report peptidomimetic compounds with a unique benzothiazolyl ketone as a warhead group, which display potent activity against SARS-CoV-2 3CLpro. The most potent inhibitor YH-53 can strongly block the SARS-CoV-2 replication. X-ray structural analysis revealed that YH-53 establishes multiple hydrogen bond interactions with backbone amino acids and a covalent bond with the active site of 3CLpro. Further results from computational and experimental studies, including an in vitro absorption, distribution, metabolism, and excretion profile, in vivo pharmacokinetics, and metabolic analysis of YH-53 suggest that it has a high potential as a lead candidate to compete with COVID-19.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Cetonas/farmacologia , Peptidomiméticos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , COVID-19/metabolismo , Chlorocebus aethiops , Proteases 3C de Coronavírus/isolamento & purificação , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Humanos , Cetonas/química , Masculino , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Conformação Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Ratos , Ratos Wistar , SARS-CoV-2/enzimologia , Células Vero , Tratamento Farmacológico da COVID-19
7.
Bioorg Med Chem Lett ; 46: 128163, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34087433

RESUMO

Myostatin, a negative regulator of muscle mass is a promising target for the treatment of muscle atrophic diseases. The novel myostatin inhibitory peptide, DF-3 is derived from the N-terminal α-helical domain of follistatin, which is an endogenous inhibitor of myostatin and other TGF-ß family members. It has been suggested that the optimization of hydrophobic residues is important to enhance the myostatin inhibition. This study describes a structure-activity relationship study focused on hydrophobic residues of DF-3 and designed to obtain a more potent peptide. A methionine residue in DF-3, which is susceptible to oxidation, was successfully converted to homophenylalanine in DF-100, and a new derivative DF-100, with four amino acid substitutions in DF-3 shows twice the potent inhibitory ability as DF-3. This report provides a new platform of a 14-mer peptide muscle enhancer.


Assuntos
Folistatina/química , Miostatina/antagonistas & inibidores , Peptídeos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Miostatina/metabolismo , Peptídeos/química , Relação Estrutura-Atividade
8.
Bioorg Med Chem ; 40: 116181, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957441

RESUMO

Inhibition of myostatin is a promising strategy for the treatment of amyotrophic disorders. Previously, we identified a minimum 23-mer peptide spanning positions 21-43 of a mouse myostatin precursor-derived prodomain and identified the nine key residues for effective myostatin inhibition through Ala scanning. We also reported the 23-mer peptides that show the propensity to form an α-helical structure around positions 32-36. Here, based on these findings, we conducted a docking simulation of a peptide-myostatin interaction. The results showed that by α-helix restraint docking of the 30-41 main chain, we obtained a proposed binding mode in which all nine of the key residues interact with myostatin. By analyzing the binding mode of four proposed docking models, we identified six of the myostatin residues that play an important role in the interaction with the peptide. This result provides a valuable insight into the relationship between myostatin and peptide interaction sites and may help in the design of future inhibitors.


Assuntos
Miostatina/antagonistas & inibidores , Peptídeos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
9.
ChemMedChem ; 16(11): 1813-1820, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33594831

RESUMO

Immunoglobulin G (IgG)-binding peptides such as 15-IgBP are convenient tools for the site-specific modification of antibodies and the preparation of homogeneous antibody-drug conjugates. A peptide such as 15-IgBP can be selectively crosslinked to the fragment crystallizable region of human IgG in an affinity-dependent manner via the ϵ-amino group of Lys8. Previously, we found that the peptide 15-Lys8Leu has a high affinity (Kd =8.19 nM) due to the presence of the γ-dimethyl group in Leu8. The primary amino group required for the crosslinking to the antibodies has, however, been lost. Here, we report the design and synthesis of a novel unnatural amino acid, 4-(2-aminoethylcarbamoyl)leucine (Aecl), which possesses both the γ-dimethyl fragment and a primary amino group. A peptide containing Aecl8 (15-Lys8Aecl) was synthesized and showed a binding affinity ten times higher (Kd =24.3 nM) than that of 15-IgBP (Kd =267 nM). Fluorescein isothiocyanate (FITC)-labeled 15-Lys8Aecl with an N-hydroxy succinimide ester at the side chain of Aecl8 (FITC-15-Lys8Aecl(OSu)) successfully labeled an antibody (trastuzumab, Herceptin® ) with the fluorophore. This peptide scaffold has both strong binding affinity and crosslinking capability, and could be a useful tool for the selective chemical modification of antibodies with molecules of interest such as drugs.


Assuntos
Desenvolvimento de Medicamentos , Imunoconjugados/química , Imunoglobulina G/química , Peptídeos/química , Humanos , Leucina/análogos & derivados , Leucina/química , Estrutura Molecular
10.
Org Biomol Chem ; 19(1): 199-207, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33174572

RESUMO

For the inhibition of myostatin, which is an attractive strategy for the treatment of muscle atrophic disorders including muscular dystrophy, myostatin-binding peptides were synthesized with an on/off-switchable photooxygenation catalyst at different positions on the peptide chain. These functionalized peptides oxygenated and inactivated myostatin upon irradiation with near-infrared light. Among the peptides tested, a peptide (5) with the catalyst moiety at the 16 position induced myostatin-selective photooxygenation, and efficiently inhibited myostatin. These peptides exhibited low phototoxicity. Such functionalized peptides would provide a precedented strategy for myostatin-targeting therapy, in which myostatin is irreversibly and catalytically inactivated by photooxygenation.


Assuntos
Miostatina/metabolismo , Oxigênio/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Processos Fotoquímicos , Catálise
11.
Chem Pharm Bull (Tokyo) ; 68(6): 512-515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475853

RESUMO

Inhibition of myostatin is a promising strategy for treatment of muscle atrophic disorders. A 16-mer myostatin inhibitory linear peptide, MIPE-1686, administered intramuscularly, significantly increases muscle mass and hindlimb grip strength in Duchenne muscular dystrophic model mice. In this paper, we describe our examination of the enzymatic stabilities of this peptide with recombinant human proteases, aminopeptidase N, chymotrypsin C, and trypsin 3. MIPE-1686 was found to be stable in the presence of these enzymes, in contrast to a peptide (1), from which MIPE-1686 was developed. Modification of the peptides at a position distant from the protease cleavage site altered their enzymatic stability. These results suggest the possibility that the stability to proteases of 16-mer myostatin inhibitory peptides is associated with an increase in their known ß-sheet formation properties. This study suggests that MIPE-1686 has a potential to serve as a long-lasting agent in vivo.


Assuntos
Miostatina/antagonistas & inibidores , Peptídeos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Miostatina/metabolismo , Peptídeos/química , Proteínas Recombinantes/metabolismo
12.
Analyst ; 145(9): 3236-3244, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32134072

RESUMO

The partial pressure of oxygen (pO2) and the extracellular pH in the tumour microenvironment are essential parameters for understanding the physiological state of a solid tumour. Also, phosphate-containing metabolites are involved in energy metabolism, and interstitial inorganic phosphate (Pi) is an informative marker for tumour growth. This article describes the simultaneous mapping of pO2, pH and Pi using 750 MHz continuous-wave (CW) electron paramagnetic resonance (EPR) and a multifunctional probe, monophosphonated trityl radical p1TAM-D. The concept was demonstrated by acquiring three-dimensional (3D) maps of pO2, pH and Pi for multiple solution samples. This was made possible by combining a multifunctional radical probe, fast CW-EPR spectral acquisition, four-dimensional (4D) spectral-spatial image reconstruction, and spectral fitting. The experimental results of mapping pO2, pH and Pi suggest that the concept of simultaneous mapping using EPR is potentially applicable for the multifunctional measurements of a mouse tumour model.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/química , Fosfatos/química , Animais , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Camundongos , Sondas Moleculares/química , Neoplasias/química , Neoplasias/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Pressão Parcial , Fosfatos/metabolismo , Razão Sinal-Ruído
13.
Bioorg Med Chem Lett ; 30(3): 126892, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874826

RESUMO

Follistatin is well known as an inhibitor of transforming growth factor (TGF)-ß superfamily ligands including myostatin and activin A. Myostatin, a negative regulator of muscle growth, is a promising target with which to treat muscle atrophic diseases. Here, we focused on the N-terminal domain (ND) of follistatin (Fst) that interacts with the type I receptor binding site of myostatin. Through bioassay of synthetic ND-derived fragment peptides, we identified DF-3, a new myostatin inhibitory 14-mer peptide which effectively inhibits myostatin, but fails to inhibit activin A or TGF-ß1, in an in vitro luciferase reporter assay. Injected intramuscularly, DF-3 significantly increases skeletal muscle mass in mice and consequently, it can serve as a platform for development of muscle enhancement based on myostatin inhibition.


Assuntos
Folistatina/química , Miostatina/antagonistas & inibidores , Peptídeos/química , Ativinas/antagonistas & inibidores , Ativinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Miostatina/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
14.
Chem Commun (Camb) ; 55(62): 9108-9111, 2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31298230

RESUMO

Inhibition of myostatin is an attractive treatment for muscular dystrophy and other amyotrophic diseases. A myostatin-binding peptide was functionalized by equipped with an on/off switchable photo-oxygenation catalyst. This peptide induces a selective oxygenation of myostatin under near-infrared light, resulting in inactivation of myostatin. This peptide shows several orders of magnitude greater inhibitory effect than the original peptide.


Assuntos
Miostatina/efeitos dos fármacos , Miostatina/efeitos da radiação , Oxigênio/química , Oxigênio/efeitos da radiação , Peptídeos/farmacologia , Processos Fotoquímicos/efeitos da radiação , Catálise/efeitos dos fármacos , Catálise/efeitos da radiação , Humanos , Raios Infravermelhos , Modelos Moleculares , Estrutura Molecular , Miostatina/metabolismo , Peptídeos/química
15.
J Magn Reson ; 305: 122-130, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31271927

RESUMO

This article reports a method of simultaneous T2* mapping of 14N- and 15N-labeled dicarboxy-PROXYLs using 750-MHz continuous-wave electron paramagnetic resonance (CW-EPR) imaging. To separate the spectra of 14N- and 15N-labeled dicarboxy-PROXYLs under magnetic field gradients, an optimization problem for spectral projections was formulated with the spatial total variation as a regularization term and solved using a local search based on the gradient descent algorithm. Using the single-point imaging (SPI) method with spectral projections of each radical, simultaneous T2* mapping was performed for solution samples. Simultaneous T2* mapping enabled visualization of the response of T2* values to the level of dissolved oxygen in the solution. Simultaneous T2* mapping applied to a mouse tumor model demonstrated the feasibility of the reported method for potential application to in vivo oxygenation imaging.

16.
Future Med Chem ; 10(6): 619-629, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412009

RESUMO

AIM: The development of a platinum anticancer agent that has improved efficacy by efficient delivery to a tumor and that suppresses side effects has been investigated. Arginine-rich triple-helical peptides are promising drug carriers because of their stability in body fluids and cell-penetrating activity. RESULTS: We synthesized a carboplatin derivative conjugated with an arginine-rich triple-helical peptide. This derivative released platinum under acidic conditions or in the presence Cl- ions. Administration of this derivative to P388 tumor-bearing mice showed comparable survival rates to twice the dose of carboplatin, which was attributed to a longer mean residence time by pharmacokinetics analysis. CONCLUSION: The collagen-like triple-helical peptide was an efficient carrier of a platinum anticancer agent because of a modification to its pharmacokinetic profile.


Assuntos
Carboplatina/química , Peptídeos Penetradores de Células/química , Pró-Fármacos/química , Animais , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Desenho de Fármacos , Estabilidade de Medicamentos , Meia-Vida , Humanos , Masculino , Malonatos/química , Camundongos , Camundongos Endogâmicos ICR , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Platina/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Estrutura Secundária de Proteína , Taxa de Sobrevida , Transplante Heterólogo
17.
J Med Chem ; 60(12): 5228-5234, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28548497

RESUMO

Neuromedin U (NMU) activates two NMU receptors (NMUR1 and NMUR2) and is a useful antiobesity drug lead. We report discovery of a hexapeptide agonist, 2-thienylacetyl-Trp1-Phe(4-F)2-Arg3-Pro4-Arg5-Asn6-NH2 (4). However, the NMUR1 selectivity and serum stability of this agonist were unsatisfactory. Through a structure-activity relationship study focused on residue 2 of agonist 4, serum stability, and pharmacokinetic properties, we report here the discovery of a novel NMUR1 selective hexapeptide agonist 7b that suppresses body weight gain in mice.


Assuntos
Peptídeos/farmacologia , Receptores de Neurotransmissores/agonistas , Aumento de Peso/efeitos dos fármacos , Animais , Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Estabilidade de Medicamentos , Humanos , Masculino , Peptídeos/sangue , Peptídeos/farmacocinética , Ratos Wistar
18.
J Pept Sci ; 23(7-8): 496-504, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28120464

RESUMO

The 3-nitro-2-pyridinesulfenyl chloride, commonly abbreviated as Npys-Cl, was among the first stable heterocyclic sulfenyl halides to be isolated. After its discovery, the Npys group was widely used as a protecting group for the amines, alcohols and thiols. Herein, we have reviewed some of the aspects of the Npys-Cl moiety, and its most promising recent uses are summarized, from the stability of the Npys protection of amines, hydroxyls and thiols and removal conditions for potential applications in peptide synthesis, to one of its most successful applications for the formation of mixed disulfides. Indeed, Npys protects thiols and acts as an activator for disulfide bond formation, thereby facilitating thiol/disulfide exchange to the corresponding disulfides. The selectivity and mild reaction conditions opened up a wide range of applications in chemical biology as well. Finally, some of the most recent developments regarding the synthesis and applications of solid-phase Npys derivatives are discussed. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Peptídeos/química , Piridinas/química , Animais , Fator Natriurético Atrial/química , Insuficiência Cardíaca/metabolismo , Humanos
19.
Bioconjug Chem ; 27(7): 1606-13, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27304609

RESUMO

Although several approaches for making antibody-drug conjugates (ADC) have been developed, it has yet to be reported that an antibody binding peptide such as Z33 from protein A is utilized as the pivotal unit to generate the noncovalent-type ADC (NC-ADC). Herein we aim to establish a novel probe for NC-ADC by synthesizing the Z33-conjugated antitumor agent, plinabulin. Due to the different solubility of two components, including hydrophobic plinabulin and hydrophilic Z33, an innovative method with a solid-supported disulfide coupling reagent is required for the synthesis of the target compounds with prominent efficiency (29% isolated yield). We demonstrate that the synthesized hybrid exhibits a binding affinity against the anti-HER2 antibody (Herceptin) and the anti-CD71 antibody (6E1) (Kd = 46.6 ± 0.5 nM and 4.5 ± 0.56 µM, respectively) in the surface plasmon resonance (SPR) assay. In the cell-based assays, the hybrid provides a significant cytotoxicity in the presence of Herceptin against HER2 overexpressing SKBR-3 cells, but not against HER2 low-expressing MCF-7 cells. Further, it is noteworthy that the hybrid in combination with Herceptin induces cytotoxicity against Herceptin-resistant SKBR-3 (SKBR-3HR) cells. Similar results are obtained with the 6E1 antibody, suggesting that the synthesized hybrid can be widely applicable for NC-ADC using the antibody of interest. In summary, a series of evidence presented here strongly indicate that NC-ADCs have high potential for the next generation of antitumor agents.


Assuntos
Antineoplásicos/metabolismo , Dicetopiperazinas/metabolismo , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Imunoglobulina G/metabolismo , Pró-Fármacos/metabolismo , Humanos , Imunoconjugados/química , Células MCF-7 , Solubilidade , Água/química
20.
ChemMedChem ; 11(8): 845-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26954624

RESUMO

Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 µm) more potent than parent peptide A (3.53±0.25 µm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides.


Assuntos
Miostatina/antagonistas & inibidores , Peptídeos/farmacologia , Acilação , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Miostatina/metabolismo , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA