Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Heliyon ; 10(1): e23258, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205285

RESUMO

A rare but lethal central nervous system disease known as granulomatous amoebic encephalitis (GAE) and potentially blinding Acanthamoeba keratitis are diseases caused by free-living Acanthamoeba. Currently, no therapeutic agent can completely eradicate or prevent GAE. Synthetic compounds are a likely source of bioactive compounds for developing new drugs. This study synthesized seventeen 1,4-benzothiazine derivatives (I -XVII) by a base-catalyzed one-pot reaction of 2-amino thiophenol with substituted bromo acetophenones. Different spectroscopic techniques, such as EI-MS, 1H-, and 13C NMR (only for the new compounds), were used for the structural characterization and conformation of compounds. These compounds were assessed for the first time against Acanthamoeba castellanii. All compounds showed anti-amoebic potential in vitro against A. castellanii, reducing its ability to encyst and excyst at 100 µM. Compounds IX, X, and XVI showed the most potent activities among all derivatives and significantly reduced the viability to 5.3 × 104 (p < 0.0003), 2 × 105 (p < 0.006), and 2.4 × 105 (p < 0.002) cells/mL, respectively. The cytotoxicity profile revealed that these molecules showed lower to moderate cytotoxicity, i.e., 36 %, 2 %, and 21 %, respectively, against human keratinocytes in vitro. These results indicate that 1,4-benzothiazines showed potent in vitro activity against trophozoites and cysts of A. castellanii. Hence, these 1,4-benzothiazine derivatives should be considered to develop new potential therapeutic agents against Acanthamoeba infections.

2.
Ann Med Surg (Lond) ; 85(12): 6067-6077, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098608

RESUMO

Geographic atrophy (GA) is a progressive form of age-related macular degeneration characterized by the degeneration of retinal pigment epithelial cells and photoreceptor death. The dysregulation of the complement cascade has been implicated in GA progression. This review provides a comprehensive overview of the pathophysiology of age-related macular degeneration and GA, discusses current therapeutic options, and focuses on the recent breakthrough drug, pegcetacoplan (SYFOVRE). Pegcetacoplan is a complement inhibitor that selectively targets the C3 complement protein, effectively modulating complement activation. Clinical trials, including the OAKS and DERBY studies, have demonstrated the efficacy of SYFOVRE in reducing the growth of GA lesions compared to placebo. The FDA approval of SYFOVRE as the first and only definitive therapy for GA marks a significant milestone in the management of this debilitating condition. The review also explores potential future treatment strategies, including immune-modulating agents and ocular gene therapy. While SYFOVRE offers new hope for GA patients, further research is needed to evaluate its long-term benefits, safety profile, and optimal treatment regimens.

3.
ACS Omega ; 8(17): 15660-15672, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151487

RESUMO

Diabetes is also known as a critical and noisy disease. Hyperglycemia, that is, increased blood glucose level is a common effect of uncontrolled diabetes, and over a period of time can cause serious effects on health such as blood vessel damage and nervous system damage. However, many attempts have been made to find suitable and beneficial solutions to overcome diabetes. Considering this fact, we synthesized a novel series of indoline-2,3-dione-based benzene sulfonamide derivatives and evaluated them against α-glucosidase and α-amylase enzymes. Out of the synthesized sixteen compounds (1-16), only three compounds showed better results; the IC50 value was in the range of 12.70 ± 0.20 to 0.90 ± 0.10 µM for α-glucosidase against acarbose 11.50 ± 0.30 µM and 14.90 ± 0.20 to 1.10 ± 0.10 µM for α-amylase against acarbose 12.20 ± 0.30 µM. Among the series, only three compounds showed better inhibitory potential such as analogues 11 (0.90 ± 0.10 µM for α-glucosidase and 1.10 ± 0.10 µM for α-amylase), 1 (1.10 ± 0.10 µM for α-glucosidase and 1.30 ± 0.10 µM for α-amylase), and 6 (1.20 ± 0.10 µM for α-glucosidase and 1.60 ± 0.10 µM for α-amylase). Molecular modeling was performed to determine the binding affinity of active interacting residues against these enzymes, and it was found that benzenesulfonohydrazide derivatives can be indexed as suitable inhibitors for diabetes mellitus.

4.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677616

RESUMO

Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1-21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings.


Assuntos
Doença de Alzheimer , Humanos , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Estrutura Molecular
5.
J Biomol Struct Dyn ; 41(21): 12077-12092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36695088

RESUMO

This work reports the convenient approach for the synthesis of thiazole based thiourea derivatives (1-21) from 2-bromo-1-(4-fluorophenyl)thiazole-1-one and phenyl isothiocyanates. The scope and diversity were achieved from readily available phenyl isothiocyanates. This protocol involves an oxidative C-S bond formation. Moreover, hybrid thiazole based thiourea scaffolds (1-21) according to literature known protocol were screened in vitro for anticancer Potential against breast cancer, antiglycation and antioxidant inhibitory profile. All newly developed scaffolds were showed moderate to good inhibitory potentials ranging from 0.10 ± 0.01 µM to 11.40 ± 0.20 µM, 64.20 ± 0.40 µM to 385.10 ± 1.70 µM and 8.90 ± 0.20 µM to 39.20 ± 0.50 µM against anticancer, antiglycation and antioxidant respectively. Among the series, compounds 12 (IC50 = 0.10 ± 0.01 µM), 10 (IC50 = 64.20 ± 0.40 µM) and 12 (IC50 = 8.90 ± 0.20 µM) with flouro substitution at phenyl ring of thiourea were identified to be the most potent among the series having excellent anticancer, antiglycation and antioxidant potential. The structure of all the newly synthetics scaffolds were confirmed by using different types of spectroscopic techniques such as HREI-MS, 1H- and 13C-NMR spectroscopy. To find structure-activity relationship, molecular docking studies were carried out to understand the binding mode of active inhibitors with active site of enzymes and results supported the experimental data.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Antioxidantes , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Tiazóis/farmacologia , Tiazóis/química , Relação Estrutura-Atividade , Tioureia/farmacologia , Isotiocianatos , Estrutura Molecular , Antineoplásicos/química
6.
Arab J Chem ; 15(12): 104366, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36276298

RESUMO

We report microwave synthesis of seven unique pyrimidine anchored derivatives (1-7) incorporating multifunctional amino derivatives along with their in vitro anticancer activity and their activity against COVID-19 in silico. 1-7 were characterized by different analytical and spectroscopic techniques. Cytotoxic activity of 1-7 was tested against HCT116 and MCF7 cell lines, whereby 6 exhibited highest anticancer activity on HCT116 and MCF7 with EC50 values of 89.24 ± 1.36 µM and 89.37 ± 1.17 µM, respectively. Molecular docking was performed for derivatives (1-7) on main protease for SARS-CoV-2 (PDB ID: 6LU7). Results revealed that most of the derivatives had superior or equivalent affinity for the 3CLpro, as determined by docking and binding energy scores. 6 topped the rest with highest binding energy score of -8.12 kcal/mol with inhibition constant reported as 1.11 µM. ADME, drug-likeness, and pharmacokinetics properties of 1-7 were tested using Swiss ADME tool. Toxicity analysis was done with pkCSM online server. All derivatives showed high GI absorption. Except 1 and 3, all derivatives showed blood brain barrier permeability. Most derivatives showed negative logKp values suggesting derivatives are less skin permeable and bioavailability score of all derivatives was 0.55. The toxicity analysis demonstrated that all derivatives have no skin sensitization properties. 6 and 7 showed maximum tolerated dose (Human) values of -0.03 and -0.018, respectively and absence of AMES toxicity.

7.
BMC Chem ; 16(1): 21, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346333

RESUMO

BACKGROUND: Anthranilic acid is an active compound with diverse biological activities such as anti-inflammatory, antineoplastic, anti-malarial and α-glucosidase inhibitory properties. It can also chelate transition metals to form complexes with applications as antipathogens, photoluminescent materials, corrosion inhibitors, and catalysts. RESULTS: Anthranilic acid complexes (1-10) of Zn(II), Bi(III), Ag(I), Fe(II), Co(II), Cu(II), Mn(II), Al, Ni(II), and Cr(III) were synthesized and characterized using thermogravimetric (TGA), elemental analysis, FT-IR, UV-vis spectrometry, mass spectrometry and magnetic susceptibility. The morphology and size of metal complex (1-10) particles were determined by scanning electron microscope (SEM) and the surface area was determined by BET analysis. TGA and CHN analysis data indicated that the stoichiometries of complexes were 1:2 metal/ligand except for Ag(I), Al and Bi. Furthermore, DFT study was performed to optimize the structure of selected complexes. The complexes (1-10) were evaluated for their catalytic activity in the reduction of 4-nitrophenol (4-NP), antibacterial activity against S. aureus, P. aeroginosa and E. coli as well as their antifungal activity against F. solani and A. niger. The complexes were also tested against the second-stage juveniles (J2) root-knot nematodes. CONCLUSION: Co(II) complex 5 and Cu(II) complex 6 showed high catalytic activity for the reduction of 4-NP to 4-aminophenol (4-AP). Ag(I) complex 3 showed the best activity against the pathogens that were tested namely clinically important bacteria S. aureus, P. aeroginosa and E. coli, commercially important fungi F. solani and A. niger and J2 root-knot nematodes M. javanica.

8.
Med Chem ; 18(6): 667-678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34931966

RESUMO

INTRODUCTION: Antioxidants are known to prevent oxidative stress-induced damage to the biomolecules and thus, delay the onset of cancers and many age-related diseases. Therefore, the development of novel and potent antioxidants is justified. METHODS: During this study, we synthesized symmetrical Bis-Schiff bases of carbohydrazide 1-27, and evaluated their in vitro antioxidative activity and cytotoxic activity. RESULTS: Among synthesized compounds, six compounds 20 (IC50 = 12.89 ± 0.02 µM), 16 (IC50 = 14.32 ± 0.43 µM), 17 (IC50 = 18.52 ± 0.83 µM), 19 (IC50 = 22.84 ± 0.62 µM), 24 (IC50 = 35.1 ± 0.82 µM) and 15 (IC50 = 40.03 ± 1.06 µM) showed an excellent 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, better than the standard butylatedhydroxyanisole (BHA) (IC50 = 44.6 ± 0.6 µM). Likewise, two compounds 16 (IC50 = 4.3 ± 1.3 µM) and 20 (IC50 = 6.6 ± 1.6 µM) showed oxidative burst scavenging activity better than the standard drug ibuprofen (IC50 = 11.2 ± 1.9 µM). Some synthesized compounds showed good to moderate toxicity against prostate cancer (PC-3) cell lines. CONCLUSION: This study has identified potent antioxidants and good cytotoxic agents with the potential to further investigate.


Assuntos
Antioxidantes , Bases de Schiff , Antioxidantes/química , Citotoxinas , Hidrazinas/farmacologia , Bases de Schiff/química
9.
Mol Divers ; 25(2): 995-1009, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32301032

RESUMO

The ß-glucuronidase, a lysosomal enzyme, catalyzes the cleavage of glucuronosyl-O-bonds. Its inhibitors play a significant role in different medicinal therapies as they cause a decrease in carcinogen-induced colonic tumors by reducing the level of toxic substances present in the intestine. Among those inhibitors, bisindole derivatives had displayed promising ß-glucuronidase inhibition activity. In the current study, hydrazone derivatives of bisindolymethane (1-30) were synthesized and evaluated for in vitro ß-glucuronidase inhibitory activity. Twenty-eight analogs demonstrated better activity (IC50 = 0.50-46.5 µM) than standard D-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 µM). Compounds with hydroxyl group like 6 (0.60 ± 0.01 µM), 20 (1.50 ± 0.10 µM) and 25 (0.50 ± 0.01 µM) exhibited the most potent inhibitory activity, followed by analogs with fluorine 21 (3.50 ± 0.10 µM) and chlorine 23 (8.20 ± 0.20 µM) substituents. The presence of hydroxyl group at the aromatic side chain was observed as the main contributing factor in the inhibitory potential. From the docking studies, it was predicted that the active compounds can fit properly in the binding groove of the ß-glucuronidase and displayed significant binding interactions with essential residues.


Assuntos
Glicoproteínas , Hidrazonas , Indóis , Glucuronidase/antagonistas & inibidores , Glucuronidase/química , Glicoproteínas/síntese química , Glicoproteínas/química , Hidrazonas/síntese química , Hidrazonas/química , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular
10.
J Photochem Photobiol B ; 202: 111723, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31785448

RESUMO

Cadmium-Bismuth microspheres (CdS-Bi2S3) were prepared by facile solvothermal method with polyvinylpyrrolidone (PVP) employed to control the morphology of CdS-Bi2S3. The product was characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), diffuse reflectance UV-vis spectrophotometer and surface area of CdS-Bi2S3 was determined by BET analyzer. It was observed that CdS-Bi2S3 spheres exhibited good catalytic activity for the reduction of 4-nitrophenol. The photocatalytic application of CdS-Bi2S3 was evaluated for the photocatalytic degradation of environmental pollutants such as methyl orange, and methyl green under UV-visible light irradiation and it demonstrated good photocatalytic activity. Furthermore, we studied the antioxidant activity of CdS-Bi2S3 and it was observed that CdS-Bi2S3 showed antioxidant activity at all tested concentrations (5, 3 and 1 mg/mL). Antimicrobial activity of CdS-Bi2S3 microspheres was also studied for microbial control and the tested nanospheres proved to be exceptional antibacterial agent against tested Gram-positive and Gram-negative bacteria. CdS-Bi2S3 microspheres also exhibited significant cytotoxicity activity against HCT 116 (Human colon colorectal tumor) cell line. Our results indicate that CdS-Bi2S3 is good photocatalyst with several biological activities. The effective preparation method of CdS-Bi2S3 could be useful to design and fabricate the novel photocatalyst which may have several applications in the field of catalysis and in the medicine.


Assuntos
Antibacterianos/química , Antioxidantes/química , Luz , Microesferas , Poluentes Químicos da Água/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Compostos Azo/química , Bismuto/química , Cádmio/química , Catálise , Sobrevivência Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HCT116 , Humanos , Testes de Sensibilidade Microbiana , Nitrofenóis/química , Oxigênio Singlete/química , Poluentes Químicos da Água/metabolismo
11.
Sci Rep ; 9(1): 16015, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690793

RESUMO

Here in this study regarding the over expression of TP, which causes some physical, mental and socio problems like psoriasis, chronic inflammatory disease, tumor angiogenesis and rheumatoid arthritis etc. By this consideration, the inhibition of this enzyme is vital to secure life from serious threats. In connection with this, we have synthesized twenty derivatives of isoquinoline bearing oxadiazole (1-20), characterized through different spectroscopic techniques such as HREI-MS, 1H- NMR and 13C-NMR and evaluated for thymidine phosphorylase inhibition. All analogues showed outstanding inhibitory potential ranging in between 1.10 ± 0.05 to 54.60 ± 1.50 µM. 7-Deazaxanthine (IC50 = 38.68 ± 1.12 µM) was used as a positive control. Through limited structure activity relationships study, it has been observed that the difference in inhibitory activities of screened analogs are mainly affected by different substitutions on phenyl ring. The effective binding interactions of the most active analogs were confirmed through docking study.


Assuntos
Inibidores Enzimáticos/síntese química , Isoquinolinas/química , Simulação de Acoplamento Molecular , Oxidiazóis/química , Timidina Fosforilase/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Oxidiazóis/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Timidina Fosforilase/química , Xantinas/química , Xantinas/metabolismo
12.
Bioorg Chem ; 91: 103112, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31349115

RESUMO

Alpha-amylase and urease enzyme over expression endorses various complications like rheumatoid arthritis, urinary tract infection, colon cancer, metabolic disorder, cardiovascular risk, and chronic kidney disease. To overcome these complications, we have synthesized new arylhydrazide bearing Schiff bases/thiazolidinone analogues as α-amylase and urease inhibitors. The analogues 1a-r were evaluated for α-amylase inhibitory potential. All analogues were found active and show IC50 value ranging between 0.8 ±â€¯0.05 and 12.50 ±â€¯0.5 µM as compare to standard acarbose (IC50 = 1.70 ±â€¯0.10 µM). Among the synthesized analogs, compound 1j, 1r, 1k, 1e, 1b and 1f having IC50 values 0.8 ±â€¯0.05, 0.9 ±â€¯0.05, 1.00 ±â€¯0.05, 1.10 ±â€¯0.10, 1.20 ±â€¯0.10 and 1.30 ±â€¯0.10 µM respectively showed an excellent inhibitory potential. Analogs 2a-o were evaluated against urease activity. All analogues were found active and show IC50 value ranging between 4.10 ±â€¯0.02 and 38.20 ±â€¯1.10 µM as compare to standard thiourea (IC50 = 21.40 ±â€¯0.21 µM). Among the synthesized analogs, compound 2k, 2a, 2h, 2j, 2f, 2e, 2g, 2b and 2l having IC50 values 4.10 ±â€¯0.02, 4.60 ±â€¯0.02, 4.70 ±â€¯0.03, 5.40 ±â€¯0.02, 6.70 ±â€¯0.05, 8.30 ±â€¯0.3, 11.20 ±â€¯0.04, 16.90 ±â€¯0.8 and 19.80 ±â€¯0.60 µM respectively showed an excellent inhibitory potential. All compounds were characterized through 1H, 13C NMR and HR-EIMS analysis. Structure activity relationship of the synthesized analogs were recognized and confirmed through molecular docking studies.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Simulação de Acoplamento Molecular , Tiazolidinas/farmacologia , Urease/antagonistas & inibidores , alfa-Amilases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Estrutura Molecular , Bases de Schiff/química , Bases de Schiff/farmacologia , Relação Estrutura-Atividade , Tiazolidinas/química , Urease/metabolismo , alfa-Amilases/metabolismo
13.
Bioorg Chem ; 89: 102999, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31151055

RESUMO

Isoquinoline analogues (KA-1 to 16) have been synthesized and evaluated for their E. coli thymidine phosphorylase inhibitory activity. Except compound 11, all other analogs showed outstanding thymidine inhibitory potential ranging in between 4.40 ±â€¯0.20 to 69.30 ±â€¯1.80 µM when compared with standard drug 7-Deazaxanthine (IC50 = 38.68 ±â€¯4.42 µM). Structure Activity Relationships has been established for all compounds, mainly based on substitution pattern on phenyl ring. All analogs were characterized by various spectroscopic techniques such as 1H NMR, 13C NMR and EI-MS. The binding interactions of isoquinoline analogues with the active site of TP enzyme, the molecular docking studies were performed. Furthermore, the angiogenic inhibitory potentials of isoquinoline analogues (KA-1-9, 14, 12 and 16) were determined in the presence of standard drug Dexamethasone based on percentage inhibitions at various concentrations. Herein this work analogue KA-12, 14 and 16 emerged with most potent angiogenic inhibitory potentials among the synthesized analogues.


Assuntos
Inibidores da Angiogênese/farmacologia , Inibidores Enzimáticos/farmacologia , Isoquinolinas/farmacologia , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Timidina Fosforilase/antagonistas & inibidores , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Isoquinolinas/síntese química , Isoquinolinas/química , Estrutura Molecular , Relação Estrutura-Atividade , Timidina Fosforilase/metabolismo
14.
Molecules ; 24(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857263

RESUMO

ß-glucuronidase is a lysosomal glycosidase enzyme which catalyzes the extracellular matrix of cancer and normal cells and the glycosaminoglycans of the cell membrane, which is important for cancer cell proliferation, invasion, and metastasis. Liver cancer, colon carcinoma, and neoplasm bladder are triggered by the increase of the level of ß-glucuronidase activity. The most valuable structures are indole and oxadiazole which has gain immense attention because of its pharmacological behavior and display many biological properties. Twenty-two (1⁻22) analogs of indole based oxadiazole were synthesized and screened for their inhibitory potential against ß-glucuronidase. Majority of the compounds showed potent inhibitory potential with IC50 values ranging between 0.9 ± 0.01 to 46.4 ± 0.9 µM, under positive control of standard drug d-saccharic acid 1,4 lactone (IC50 = 48.1 ± 1.2 µM). Structural activity relationship (SAR) has been established for all synthesized compounds. To shed light on molecular interactions between the synthesized compounds and ß-glucuronidase, 1, 4, and 6 compounds were docked into the active binding site of ß-glucuronidase. The obtained results showed that this binding is thermodynamically favorable and ß-glucuronidase inhibition of the selected compounds increases with the number of hydrogen bonding established in selected compound-ß-glucuronidase complexes.


Assuntos
Glucuronidase/metabolismo , Indóis/química , Indóis/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis/química , Relação Estrutura-Atividade
15.
Bioorg Chem ; 82: 253-266, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391856

RESUMO

Overexpression of NTPDases leads to a number of pathological situations such as thrombosis, and cancer. Thus, effective inhibitors are required to combat these pathological situations. Different classes of NTPDase inhibitors are reported so far including nucleotides and their derivatives, sulfonated dyes such as reactive blue 2, suramin and its derivatives, and polyoxomatalates (POMs). Suramin is a well-known and potent NTPDase inhibitor, nonetheless, a range of side effects are also associated with it. Reactive blue 2 also had non-specific side effects that become apparent at high concentrations. In addition, most of the NTPDase inhibitors are high molecular weight compounds, always required tedious chemical steps to synthesize. Hence, there is still need to explore novel, low molecular weight, easy to synthesize, and potent NTPDase inhibitors. Keeping in mind the known NTPDase inhibitors with imine functionality and nitrogen heterocycles, Schiff bases of tryptamine, 1-26, were synthesized and characterized by spectroscopic techniques such as EI-MS, HREI-MS, 1H-, and 13C NMR. All the synthetic compounds were evaluated for the inhibitory avidity against activities of three major isoforms of NTPDases: NTPDase-1, NTPDase-3, and NTPDase-8. Cumulatively, eighteen compounds were found to show potent inhibition (Ki = 0.0200-0.350 µM) of NTPDase-1, twelve (Ki = 0.071-1.060 µM) of NTPDase-3, and fifteen compounds inhibited (Ki = 0.0700-4.03 µM) NTPDase-8 activity. As a comparison, the Kis of the standard inhibitor suramin were 1.260 ±â€¯0.007, 6.39 ±â€¯0.89 and 1.180 ±â€¯0.002 µM, respectively. Kinetic studies were performed on lead compounds (6, 5, and 21) with human (h-) NTPDase-1, -3, and -8, and Lineweaver-Burk plot analysis showed that they were all competitive inhibitors. In silico study was conducted on compound 6 that showed the highest level of inhibition of NTPDase-1 to understand the binding mode in the active site of the enzyme.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Apirase/antagonistas & inibidores , Inibidores Enzimáticos/química , Bases de Schiff/química , Triptaminas/química , Adenosina Trifosfatases/isolamento & purificação , Animais , Antígenos CD/química , Antígenos CD/isolamento & purificação , Apirase/química , Apirase/isolamento & purificação , Domínio Catalítico , Linhagem Celular , Chlorocebus aethiops , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Humanos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Bases de Schiff/síntese química , Bases de Schiff/toxicidade , Relação Estrutura-Atividade , Triptaminas/síntese química , Triptaminas/toxicidade
16.
Bioorg Med Chem ; 26(12): 3654-3663, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29853339

RESUMO

Inhibition of Thymidine phosphorylase (TP) is continuously studied for the design and development of new drugs for the treatment of neoplastic diseases. As a part of our effort to identify TP inhibitors, we performed a structure-based virtual screening (SBVS) of our compound collection. Based on the insights gained from structures of virtual screening hits, a scaffold was designed using 1,3,4-oxadiazole as the basic structural feature and SAR studies were carried out for the optimization of this scaffold. Twenty-five novel bis-indole linked 1,3,4-oxadiazoles (7-31) were designed, synthesized and tested in vitro against E. coli TP (EcTP). Compound 7 emerged as potent TP inhibitor with an IC50 value of 3.50 ±â€¯0.01 µM. Docking studies were carried out using GOLD software on thymidine phosphorylase from human (hTP) and E. coli (EcTP). Various hydrogen bonding, hydrophobic interactions, and π-π stacking were observed between designed molecules and the active site amino acid residues of the studied enzymes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Metano/química , Oxidiazóis/química , Timidina Fosforilase/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Escherichia coli/enzimologia , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Timidina Fosforilase/metabolismo
17.
Bioorg Chem ; 79: 323-333, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29803079

RESUMO

Thymidine phosphorylase is an enzyme involved in pyrimidine salvage pathway that is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is enormously up regulated in a variety of solid tumors. Furthermore, surpassing of TP level protects tumor cells from apoptosis and helps cell survival. Thus TP is identified as a prime target for developing novel anticancer therapies. A new class of exceptionally potent isatin based oxadiazole (1-30) has been synthesized and evaluated for thymidine phosphorylase inhibitory potential. All analogs showed potent thymidine phosphorylase inhibition when compared with standard 7-Deazaxanthine, 7DX (IC50 = 38.68 ±â€¯1.12 µM). Molecular docking study was performed in order to determine the binding interaction of these newly synthesized compounds, which revealed that these synthesized compounds established stronger hydrogen bonding network with active site of residues as compare to the standard compound 7DX.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Isatina/farmacologia , Simulação de Acoplamento Molecular , Oxidiazóis/farmacologia , Timidina Fosforilase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Isatina/química , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Proteínas Recombinantes/metabolismo , Software , Relação Estrutura-Atividade , Timidina Fosforilase/metabolismo
18.
Bioorg Chem ; 78: 324-331, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29626638

RESUMO

Thymidine phosphorylase triggers the phosphorylation of pyrimidine base to thymine and 2-deoxyribose 1-phosphate which undergoes dephosphorylation to 2-deoxyribose. It plays a role in tumor angiogenesis which is referred to the development of blood vessels during tumor growth and therefore is an attractive drug target. Keeping in view the greater importance of its inhibition, here in this study we have synthesized piperazine analogs (1-18) and evaluated for thymidine phosphorylase inhibitory activity. All analogs showed potent inhibitory potential with IC50 values ranging between 0.2 ±â€¯0.01 and 42.20 ±â€¯0.70 µM when compared with standard 7-Deazaxanthine (IC50 value of 38.68 ±â€¯1.12 µM). Structure activity relationship has been also established for all newly synthesized compounds. Molecular docking studies revealed that these compounds established stronger hydrogen bonding networks with active site residues of enzyme.


Assuntos
Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Piperazina/farmacologia , Timidina Fosforilase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Estrutura Molecular , Piperazina/síntese química , Piperazina/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Timidina Fosforilase/metabolismo
19.
Bioorg Chem ; 78: 411-417, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29689419

RESUMO

Urease is known to be one of the major causes of diseases induced by Helicobacter pylori, thus allow them to survive at low pH inside the stomach and thereby, play an important role in the pathogenesis of gastric and peptic ulcer, apart from cancer as well. Keeping in view the great importance of urease inhibitors, here in this study we have synthesized piperazine derivatives (1-15) and evaluated for their urease inhibitory activity. All analogs showed excellent inhibitory potential with IC50 values ranging between 1.1 ±â€¯0.01 and 33.40 ±â€¯1.50 µM when compared with the standard inhibitor thiourea (IC50 = 21.30 ±â€¯1.10 µM). Structure activity relationship has been established for all compounds which are mainly based upon the substitution on phenyl ring. Molecular docking study was performed in order to understand the binding interaction of the compounds in the active site of enzyme.


Assuntos
Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Helicobacter pylori/enzimologia , Piperazinas/farmacologia , Urease/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Guanidinas/síntese química , Guanidinas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade , Urease/metabolismo
20.
Bioorg Chem ; 78: 17-23, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29525348

RESUMO

Thymidine phosphorylase (TP) over expression plays role in several pathological conditions, such as rheumatoid arthritis, chronic inflammatory diseases, psoriasis, and tumor angiogenesis. The inhibitor of this enzyme plays an important role in preventing the serious threat due to over expression of TP. In this regard, a series of seventeenanalogs of 3-formylcoumarin (1-17) were synthesized, characterized by 1HNMR and EI-MS and screened for thymidine phosphorylaseinhibitory activity. All analogs showed a variable degree of thymidine phosphorylase inhibition with IC50 values ranging between 0.90 ±â€¯0.01 and 53.50 ±â€¯1.20 µM when compared with the standard inhibitor 7-Deazaxanthine having IC50 value 38.68 ±â€¯1.12 µM. Among the series, fifteenanalogs such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16 and 17 showed excellent inhibition which is many folds better than the standard 7-Deazaxanthine whiletwo analogs 13 and 14 showed good inhibition. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituents on phenyl ring. Molecular docking study was carried out to understand the binding interaction of the most active analogs.


Assuntos
Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Timidina Fosforilase/antagonistas & inibidores , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Timidina Fosforilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA