Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(49): 33694-33700, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926917

RESUMO

In this study, soybean straw (SS) as a promising source of glycolaldehyde-rich bio-oil production and extraction was investigated. Proximate and ultimate analysis of SS was performed to examine the feasibility and suitability of SS for thermochemical conversion design. The effect of the co-catalyst (CaCl2 + ash) on glycolaldehyde concentration (%) was examined. Thermogravimetric-Fourier-transform infrared (TG-FTIR) analysis was applied to optimize the pyrolysis temperature and biomass-to-catalyst ratio for glycolaldehyde-rich bio-oil production. By TG-FTIR analysis, the highest glycolaldehyde concentration of 8.57% was obtained at 500 °C without the catalyst, while 12.76 and 13.56% were obtained with the catalyst at 500 °C for a 1:6 ratio of SS-to-CaCl2 and a 1:4 ratio of SS-to-ash, respectively. Meanwhile, the highest glycolaldehyde concentrations (%) determined by gas chromatography-mass spectrometry (GC-MS) analysis for bio-oils produced at 500 °C (without the catalyst), a 1:6 ratio of SS-to-CaCl2, and a 1:4 ratio of SS-to-ash were found to be 11.3, 17.1, and 16.8%, respectively. These outcomes were fully consistent with the TG-FTIR results. Moreover, the effect of temperature on product distribution was investigated, and the highest bio-oil yield was achieved at 500 °C as 56.1%. This research work aims to develop an environment-friendly extraction technique involving aqueous-based imitation for glycolaldehyde extraction with 23.6% yield. Meanwhile, proton nuclear magnetic resonance (1H NMR) analysis was used to confirm the purity of the extracted glycolaldehyde, which was found as 91%.

2.
Bioresour Technol ; 314: 123699, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32599526

RESUMO

In this study, pyrolysis kinetics and thermodynamic parameters of Safflower residues (SR) obtained from oil extraction were investigated by using TG/DSC-FTIR and py-GC/MS. Thermal analysis was performed from ambient temperature to 750 °C under a nitrogen atmosphere. The first-order reaction kinetics model was applied to thermal analysis data to determine apparent kinetic parameters. Activation energy and pre-exponential factor were calculated as 76.60 kJ.mol-1 and 1.89x106 min-1, respectively. The thermodynamic parameters such as the change in Gibb's free energy, the difference in enthalpy and the entropy change were calculated to be 201.36 kJ mol-1, 71.79 kJ mol-1, and -0.196 kJ mol-1, respectively. TG/FTIR analysis revealed that CO2, C6H5OH, and CC functional group as the main pyrolysis gas products. According to Py-GC/MS results of SR, the presence of high energy-containing compounds among the pyrolysis products was proved. All these results show that SR is suitable for pyrolysis to produce biofuel and/or chemicals.


Assuntos
Carthamus tinctorius , Pirólise , Cinética , Sementes , Termodinâmica , Termogravimetria
3.
Bioresour Technol ; 279: 67-73, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30711754

RESUMO

The identification of biomasses for pyrolytic conversion to biofuels depends on many factors, including: moisture content, elemental and volatile matter composition, thermo-kinetic parameters, and evolved gases. The present work illustrates how canola residue may be a suitable biofuel feedstock for low-temperature (<450 °C) slow pyrolysis with energetically favorable conversions of up to 70 wt% of volatile matter. Beyond this point, thermo-kinetic parameters and activation energies, which increase from 154.3 to 400 kJ/mol from 65 to 80% conversion, suggest that the energy required to initiate conversion is thermodynamically unfavorable. This is likely due to its higher elemental carbon content than similar residues, leading to enhanced carbonization rather than devolatilization at higher temperatures. Evolved gas analysis supports limiting pyrolysis temperature; ethanol and methane conversions are maximized below 500 °C with ∼6% water content. Carbon dioxide is the dominant evolved gas beyond this temperature.


Assuntos
Biomassa , Óleo de Brassica napus/metabolismo , Biocombustíveis , Dióxido de Carbono/metabolismo , Gases/metabolismo , Temperatura Alta , Cinética , Pirólise , Temperatura , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA