Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 207: 110-117, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29793022

RESUMO

Mechanical recovery of oils using oil sorbents is one of the most important approaches to manage marine oil spills. However, the properties of the oils spilled into sea are influenced by external environmental conditions. In this study, we present a graphene-based (GB) sponge as a novel sorbent for crude oil removal and compare its performance with that of a commercial sorbent sheet under various environmental parameters. The GB sponge with excellent superhydrophobic and superoleophilic characteristics is demonstrated to be an efficient sorbent for crude oils, with high sorption capacity (up to 85-95 times its weight) and good reusability. The crude-oil-sorption capacity of our GB sponge is remarkably higher (about 4-5 times) than that of the commercial sheet and most other previously reported sponge sorbents. Moreover, several challenging environmental conditions were examined for their effects on the sorption performance, including the weathering time of oils, seawater temperature, and turbulence (wave effect). The results show that the viscosity of the oil increased with increasing weathering time or decreasing temperature; therefore, the sorption rate seemed to decrease with longer weathering times and lower temperatures. Turbulence can facilitate inner sorption and promote higher oil sorption. Our results indicate that the extent of the effects of weather and other environmental factors on crude oil should be considered in the assessment of the effective adsorption capacity and efficiency of sorbents. The present work also highlights the widespread potential applications of our GB sponge in marine spilled-oil cleanup and hydrophobic solvent removal.


Assuntos
Recuperação e Remediação Ambiental/métodos , Grafite/química , Petróleo/metabolismo , Adsorção , Petróleo/análise
2.
ACS Appl Mater Interfaces ; 9(46): 40645-40654, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29099171

RESUMO

We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.

3.
Mater Sci Eng C Mater Biol Appl ; 33(2): 989-95, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25427516

RESUMO

Functionalized multi-walled carbon nanotubes (f-MWCNTs) were conjugated to an antibody of BT-474 cancer cells (f-MWCNTs-ab), and the photothermal effect of the f-MWCNTs-ab for BT-474 cancer cell destruction was demonstrated. After near-infrared irradiation, the f-MWCNTs-ab were more capable of killing cancer cells and possessed higher cell specificity than f-MWCNTs. Quantitative results showed that the viability of the cancer cells was affected by the concentration of the f-MWCNTs-ab solution, irradiation time, and settling time after irradiation. The membrane impermeable fluorescence dye ethidium bromide was used to detect cell viability after near-infrared irradiation, and the results agreed with those obtained from the Alamar Blue cell viability assay. The EtBr fluorescence results suggest that the cell membrane, attached to f-MWCNTs-ab, was damaged after irradiation, which led to cell death and necrosis. Using confocal microscopy, a few f-MWCNTs-ab were detected in the cell, indicating the endocytosis effect. The results not only explain the improved efficiency of thermotherapy but also indicate that necrosis may result from protein denaturation attributing to the heated f-MWCNTs-ab in the cell.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Nanotubos de Carbono/química , Processos Fotoquímicos , Anticorpos/química , Anticorpos/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Temperatura Alta , Humanos , Raios Infravermelhos , Lasers
4.
Biomaterials ; 31(21): 5575-87, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20427083

RESUMO

The interaction of ultra-nanocrystalline diamond (UNCD) with neural stem cells (NSCs) has been studied in order to evaluate its potential as a biomaterial. Hydrogen-terminated UNCD (H-UNCD) films were compared with standard grade polystyrene in terms of their impact on the differentiation of NSCs. When NSCs were cultured on these substrates in medium supplemented with low concentration of serum and without any differentiating factors, H-UNCD films spontaneously induced neuronal differentiation on NSCs. By direct suppression of mitogen-activated protein kinase/extracellular signaling-regulated kinase1/2 (MAPK/Erk1/2) signaling pathway in NSCs using U0126, known to inhibit the activation of Erk1/2, we demonstrated that the enhancement of Erk1/2 pathway is one of the effects of H-UNCD-induced NSCs differentiation. Moreover, functional-blocking antibody directed against integrin beta1 subunit inhibited neuronal differentiation on H-UNCD films. This result demonstrated the involvement of integrin beta1 in H-UNCD-mediated neuronal differentiation. Mechanistic studies revealed the cell adhesion to H-UNCD films associated with focal adhesion kinase (Fak) and initiated MAPK/Erk1/2 signaling. Our study demonstrated that H-UNCD films-mediated NSCs differentiation involves fibronectin-integrin beta1 and Fak-MAPK/Erk signaling pathways in the absence of differentiation factors. These observations raise the potential for the use of UNCD as a biomaterial for central nervous system transplantation and tissue engineering.


Assuntos
Diferenciação Celular/fisiologia , Diamante/química , Nanopartículas/química , Neurônios/fisiologia , Células-Tronco/fisiologia , Animais , Biomarcadores/metabolismo , Butadienos/metabolismo , Adesão Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Inibidores Enzimáticos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Integrina beta1/metabolismo , Teste de Materiais , Camundongos , Neurônios/citologia , Nitrilas/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Propriedades de Superfície
5.
Biomaterials ; 30(20): 3428-35, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19406465

RESUMO

The interaction of ultra-nanocrystalline diamond (UNCD) with neural stem cells (NSCs) has been studied along with its surface modification in order to improve its function as a biomaterial. Hydrogen- and oxygen-terminated UNCD films were compared with standard grade polystyrene in terms of their impact on the growth, expansion and differentiation of NSCs. When NSCs were cultured on these substrates in low serum and without any differentiating factors, hydrogen-terminated UNCD films spontaneously induced cell proliferation and neuronal differentiation. Oxygen-terminated UNCD films were also shown to further improve neural differentiation, with a preference to differentiate into oligodendrocytes. Hence, controlling the surface properties of UNCD could manipulate the differentiation of NSCs for different biomedical applications. These observations raise the potential for the use of UNCD as a biomaterial for central nervous system transplantation and tissue engineering.


Assuntos
Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/fisiologia , Proliferação de Células , Diamante/química , Neurônios/fisiologia , Células-Tronco/fisiologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Forma Celular , Células Cultivadas , Humanos , Teste de Materiais , Camundongos , Neurônios/citologia , Poliestirenos/química , Células-Tronco/citologia , Propriedades de Superfície , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA