Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101230, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38558570

RESUMO

Recombinant adeno-associated virus (rAAV)-based gene therapy is entering clinical and commercial stages at an unprecedented pace. Triple transfection of HEK293 cells is currently the most widely used platform for rAAV manufacturing. Here, we develop low-cis triple transfection that decreases transgene plasmid use by 10- to 100-fold and overcomes several major limitations associated with standard triple transfection. This new method improves packaging of yield-inhibiting transgenes by up to 10-fold, and generates rAAV batches with reduced plasmid backbone contamination that otherwise cannot be eliminated in downstream processing. When tested in mice and compared with rAAV produced by standard triple transfection, low-cis rAAV shows comparable or superior potency and results in diminished plasmid backbone DNA and RNA persistence in tissue. Mechanistically, low-cis triple transfection relies on the extensive replication of transgene cassette (i.e., inverted terminal repeat-flanked vector DNA) in HEK293 cells during production phase. This cost-effective method can be easily implemented and is widely applicable to producing rAAV of high quantity, purity, and potency.

3.
Viruses ; 15(6)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37376529

RESUMO

Clinical-grade preparations of adeno-associated virus (AAV) vectors used for gene therapy typically undergo a series of diagnostics to determine titer, purity, homogeneity, and the presence of DNA contaminants. One type of contaminant that remains poorly investigated is replication-competent (rc)AAVs. rcAAVs form through recombination of DNA originating from production materials, yielding intact, replicative, and potentially infectious virus-like virions. They can be detected through the serial passaging of lysates from cells transduced by AAV vectors in the presence of wildtype adenovirus. Cellular lysates from the last passage are subjected to qPCR to detect the presence of the rep gene. Unfortunately, the method cannot be used to query the diversity of recombination events, nor can qPCR provide insights into how rcAAVs arise. Thus, the formation of rcAAVs through errant recombination events between ITR-flanked gene of interest (GOI) constructs and expression constructs carrying the rep-cap genes is poorly described. We have used single molecule, real-time sequencing (SMRT) to analyze virus-like genomes expanded from rcAAV-positive vector preparations. We present evidence that sequence-independent and non-homologous recombination between the ITR-bearing transgene and the rep/cap plasmid occurs under several events and rcAAVs spawn from diverse clones.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Vetores Genéticos/genética , Plasmídeos , Genoma Viral , Terapia Genética
4.
Hum Gene Ther ; 33(21-22): 1187-1196, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178359

RESUMO

Recombinant adeno-associated viruses (rAAVs) are currently the most prominently investigated vector platform for human gene therapy. The rAAV capsid serves as a potent and efficient vehicle for delivering genetic payloads into the host cell, while the vector genome determines the function and effectiveness of these biotherapies. However, current production schemes yield vectors that may consist of heterogeneous populations, compromising their potencies. The development of next-generation sequencing methods within the past few years have helped investigators profile the diversity and relative abundances of heterogenous species in vector preparations. Specifically, long-read sequencing methods, like single molecule real-time (SMRT) sequencing, have been used to uncover truncations, chimeric genomes, and inverted terminal repeat (ITR) mutations in vectors. Unfortunately, these sequencing platforms may be inaccessible to investigators with limited resources, require large amounts of input material, or may require long wait times for sequencing and analyses. Recent advances with nanopore sequencing have helped to bridge the gap for quick and relatively inexpensive long-read sequencing needs. However, their limitations and sample biases are not well-defined for sequencing rAAV. In this study, we explored the capacity for nanopore sequencing to directly interrogate rAAV content to obtain full-length resolution of encapsidated genomes. We found that the nanopore platform can cover the entirety of rAAV genomes from ITR to ITR without the need for pre-fragmentation. However, the accuracy for base calling was low, resulting in a high degree of miscalled bases and false indels. These false indels led to read-length compression; thus, assessing heterogeneity based on read length is not advisable with current nanopore technologies. Nonetheless, nanopore sequencing was able to correctly identify truncation hotspots in single-strand and self-complementary vectors similar to SMRT sequencing. In summary, nanopore sequencing can serve as a rapid and low-cost alternative for proofing AAV vectors.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Humanos , Vetores Genéticos/genética , Dependovirus/genética , Sequências Repetidas Terminais
5.
Hum Gene Ther ; 33(7-8): 371-388, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35293222

RESUMO

In the past two decades, adeno-associated virus (AAV) vector manufacturing has made remarkable advancements to meet large-scale production demands for preclinical and clinical trials. In addition, AAV vectors have been extensively studied for their safety and efficacy. In particular, the presence of empty AAV capsids and particles containing "inaccurate" vector genomes in preparations has been a subject of concern. Several methods exist to separate empty capsids from full particles; but thus far, no single technique can produce vectors that are free of empty or partial (non-unit length) capsids. Unfortunately, the exact genome compositions of full, intermediate, and empty capsids remain largely unknown. In this work, we used AAV-genome population sequencing to explore the compositions of DNase-resistant, encapsidated vector genomes produced by two common production pipelines: plasmid transfection in human embryonic kidney cells (pTx/HEK293) and baculovirus expression vectors in Spodoptera frugiperda insect cells (rBV/Sf9). Intriguingly, our results show that vectors originating from the same construct design that were manufactured by the rBV/Sf9 system produced a higher degree of truncated and unresolved species than those generated by pTx/HEK293 production. We also demonstrate that empty particles purified by cesium chloride gradient ultracentrifugation are not truly empty but are instead packaged with genomes composed of a single truncated and/or unresolved inverted terminal repeat (ITR). Our data suggest that the frequency of these "mutated" ITRs correlates with the abundance of inaccurate genomes in all fractions. These surprising findings shed new light on vector efficacy, safety, and how clinical vectors should be quantified and evaluated.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Baculoviridae/genética , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética , Células HEK293 , Humanos , Insetos/genética
6.
Nat Med ; 28(2): 251-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145305

RESUMO

Tay-Sachs disease (TSD) is an inherited neurological disorder caused by deficiency of hexosaminidase A (HexA). Here, we describe an adeno-associated virus (AAV) gene therapy expanded-access trial in two patients with infantile TSD (IND 18225) with safety as the primary endpoint and no secondary endpoints. Patient TSD-001 was treated at 30 months with an equimolar mix of AAVrh8-HEXA and AAVrh8-HEXB administered intrathecally (i.t.), with 75% of the total dose (1 × 1014 vector genomes (vg)) in the cisterna magna and 25% at the thoracolumbar junction. Patient TSD-002 was treated at 7 months by combined bilateral thalamic (1.5 × 1012 vg per thalamus) and i.t. infusion (3.9 × 1013 vg). Both patients were immunosuppressed. Injection procedures were well tolerated, with no vector-related adverse events (AEs) to date. Cerebrospinal fluid (CSF) HexA activity increased from baseline and remained stable in both patients. TSD-002 showed disease stabilization by 3 months after injection with ongoing myelination, a temporary deviation from the natural history of infantile TSD, but disease progression was evident at 6 months after treatment. TSD-001 remains seizure-free at 5 years of age on the same anticonvulsant therapy as before therapy. TSD-002 developed anticonvulsant-responsive seizures at 2 years of age. This study provides early safety and proof-of-concept data in humans for treatment of patients with TSD by AAV gene therapy.


Assuntos
Doença de Tay-Sachs , Anticonvulsivantes , Dependovirus/genética , Terapia Genética , Humanos , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia
7.
Gene Ther ; 29(6): 333-345, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34611321

RESUMO

Inverted terminal repeats (ITRs) are the only wild-type components retained in the genome of adeno-associated virus (AAV) vectors. To determine whether ITR modification is a viable approach for AAV vector engineering, we rationally deleted all CpG motifs in the ITR and examined whether CpG elimination compromises AAV-vector production and transduction. Modified ITRs were stable in the plasmid and maintained the CpG-free nature in purified vectors. Replacing the wild-type ITR with the CpG-free ITR did not affect vector genome encapsidation. However, the vector yield was decreased by approximately 3-fold due to reduced vector genome replication. To study the biological potency, we made micro-dystrophin (µDys) AAV vectors carrying either the wild-type ITR or the CpG-free ITR. We delivered the CpG-free µDys vector to one side of the tibialis anterior muscle of dystrophin-null mdx mice and the wild-type µDys vector to the contralateral side. Evaluation at four months after injection showed no difference in the vector genome copy number, microdystrophin expression, and muscle histology and force. Our results suggest that the complete elimination of the CpG motif in the ITR does not affect the biological activity of the AAV vector. CpG-free ITRs could be useful in engineering therapeutic AAV vectors.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Distrofina/genética , Terapia Genética , Vetores Genéticos/genética , Camundongos , Camundongos Endogâmicos mdx
8.
Nat Commun ; 12(1): 6267, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725353

RESUMO

Adeno-associated virus (AAV) vectors are important delivery platforms for therapeutic genome editing but are severely constrained by cargo limits. Simultaneous delivery of multiple vectors can limit dose and efficacy and increase safety risks. Here, we describe single-vector, ~4.8-kb AAV platforms that express Nme2Cas9 and either two sgRNAs for segmental deletions, or a single sgRNA with a homology-directed repair (HDR) template. We also use anti-CRISPR proteins to enable production of vectors that self-inactivate via Nme2Cas9 cleavage. We further introduce a nanopore-based sequencing platform that is designed to profile rAAV genomes and serves as a quality control measure for vector homogeneity. We demonstrate that these platforms can effectively treat two disease models [type I hereditary tyrosinemia (HT-I) and mucopolysaccharidosis type I (MPS-I)] in mice by HDR-based correction of the disease allele. These results will enable the engineering of single-vector AAVs that can achieve diverse therapeutic genome editing outcomes.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Dependovirus/genética , Edição de Genes/métodos , Vetores Genéticos/genética , Mucopolissacaridose II/genética , Reparo de DNA por Recombinação , Tirosinemias/genética , Animais , Proteína 9 Associada à CRISPR/genética , Dependovirus/metabolismo , Feminino , Terapia Genética , Vetores Genéticos/metabolismo , Humanos , Masculino , Camundongos , Mucopolissacaridose II/terapia , Tirosinemias/terapia
9.
Mol Ther Methods Clin Dev ; 22: 107-121, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34514023

RESUMO

Corneal neovascularization (CoNV) leads to visual impairment, affecting over 1.4 million people in the United States per year. It is caused by a variety of pathologies, such as inflammation, hypoxia, and limbal barrier dysfunction. Injection of the anti-vascular endothelial growth factor (VEGF) drug KH902 (conbercept) can inhibit CoNV but requires repeated dosing that produces associated side effects, such as cornea scar. To explore more efficacious and long-lasting treatment of CoNV, we employed recombinant adeno-associated virus (rAAV)2 and rAAV8 vectors to mediate KH902 expression via a single intrastromal injection and investigated its anti-angiogenic effects and safety in both alkali-burn- and suture-induced CoNV mouse models. Our results showed that rAAV-mediated KH902 mRNA expression in the cornea was sustained for at least 3 months after a single intrastromal injection. Moreover, the expression level of rAAV8-KH902 far exceeded that of rAAV2-KH902. A single-dose rAAV8-KH902 treatment at 8 × 108 genome copies (GCs) per cornea dramatically inhibited CoNV for an extended period of time in mouse CoNV models without adverse events, whereas the inhibition of CoNV by a single intrastromal administration of the conbercept drug lasted for only 10-14 days. Overall, our study demonstrated that the treatment of CoNV with a single dose of rAAV8-KH902 via intrastromal administration was safe, effective, and long lasting, representing a novel therapeutic strategy for CoNV.

10.
Hum Gene Ther ; 32(13-14): 649-666, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34182803

RESUMO

The wet form of age-related macular degeneration is characterized by neovascular pathologies that, if untreated, can result in edemas followed by rapid vision loss. Inhibition of vascular endothelial growth factor (VEGF) has been used to successfully treat neovascular pathologies of the eye. Nonetheless, some patients require frequent intravitreal injections of anti-VEGF drugs, increasing the burden and risk of complications from the procedure to affected individuals. Recombinant adeno-associated virus (rAAV)-mediated expression of anti-VEGF proteins is an attractive alternative to reduce risk and burden to patients. However, controversy remains as to the safety of prolonged VEGF inhibition in the eye. Here, we show that two out of four rAAV serotypes tested by intravitreal delivery to express the anti-VEGF drug conbercept lead to a dose-dependent vascular sheathing pathology that is characterized by immune cell infiltrates, reminiscent of vasculitis in humans. We show that this pathology is accompanied by increased expression in vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1), both of which promote extravasation of immune cells from the vasculature. While formation of the vascular sheathing pathology is prevented in immunodeficient Rag-1 mice that lack B and T cells, increased expression of VACM1 and ICAM1 still occurs, indicating that inhibition of VEGF function leads to expression changes in cell adhesion molecules that promote extravasation of immune cells. Importantly, a 10-fold lower dose of one of the vectors that cause a vascular sheathing pathology is still able to reduce edemas resulting from choroidal neovascularization without causing any vascular sheathing pathology and only a minimal increase in VCAM1 expression. The data suggest that treatments of neovascular eye pathologies with rAAV-mediated expression of anti VEGF drugs can be developed safely. However, viral load needs to be adjusted to the tropisms of the serotype and the expression pattern of the promoter.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Vasculite Retiniana , Inibidores da Angiogênese/uso terapêutico , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/genética , Dependovirus/genética , Humanos , Injeções Intravítreas , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Camundongos , Vasculite Retiniana/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética
11.
Front Immunol ; 12: 673699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046041

RESUMO

Conventional vaccinations and immunotherapies have encountered major roadblocks in preventing infectious diseases like HIV, influenza, and malaria. These challenges are due to the high genomic variation and immunomodulatory mechanisms inherent to these diseases. Passive transfer of broadly neutralizing antibodies may offer partial protection, but these treatments require repeated dosing. Some recombinant viral vectors, such as those based on lentiviruses and adeno-associated viruses (AAVs), can confer long-term transgene expression in the host after a single dose. Particularly, recombinant (r)AAVs have emerged as favorable vectors, given their high in vivo transduction efficiency, proven clinical efficacy, and low immunogenicity profiles. Hence, rAAVs are being explored to deliver recombinant antibodies to confer immunity against infections or to diminish the severity of disease. When used as a vaccination vector for the delivery of antigens, rAAVs enable de novo synthesis of foreign proteins with the conformation and topology that resemble those of natural pathogens. However, technical hurdles like pre-existing immunity to the rAAV capsid and production of anti-drug antibodies can reduce the efficacy of rAAV-vectored immunotherapies. This review summarizes rAAV-based prophylactic and therapeutic strategies developed against infectious diseases that are currently being tested in pre-clinical and clinical studies. Technical challenges and potential solutions will also be discussed.


Assuntos
Doenças Transmissíveis/terapia , Dependovirus , Vetores Genéticos , Imunoterapia/métodos , Humanos , Vacinas
12.
Front Immunol ; 12: 674242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995418

RESUMO

Recombinant adeno-associated virus (rAAV) platforms hold promise for in vivo gene therapy but are undermined by the undesirable transduction of antigen presenting cells (APCs), which in turn can trigger host immunity towards rAAV-expressed transgene products. In light of recent adverse events in patients receiving high systemic AAV vector doses that were speculated to be related to host immune responses, development of strategies to mute innate and adaptive immunity is imperative. The use of miRNA binding sites (miR-BSs) to confer endogenous miRNA-mediated regulation to detarget transgene expression from APCs has shown promise for reducing transgene immunity. Studies have shown that designing miR-142BSs into rAAV1 vectors were able to repress costimulatory signals in dendritic cells (DCs), blunt the cytotoxic T cell response, and attenuate clearance of transduced muscle cells in mice to allow sustained transgene expression in myofibers with negligible anti-transgene IgG production. In this study, we screened individual and combinatorial miR-BS designs against 26 miRNAs that are abundantly expressed in APCs, but not in skeletal muscle. The highly immunogenic ovalbumin (OVA) transgene was used as a proxy for foreign antigens. In vitro screening in myoblasts, mouse DCs, and macrophages revealed that the combination of miR-142BS and miR-652-5pBS strongly mutes transgene expression in APCs but maintains high myoblast and myocyte expression. Importantly, rAAV1 vectors carrying this novel miR-142/652-5pBS cassette achieve higher transgene levels following intramuscular injections in mice than previous detargeting designs. The cassette strongly inhibits cytotoxic CTL activation and suppresses the Th17 response in vivo. Our approach, thus, advances the efficiency of miRNA-mediated detargeting to achieve synergistic reduction of transgene-specific immune responses and the development of safe and efficient delivery vehicles for gene therapy.


Assuntos
Apresentação de Antígeno/imunologia , Dependovirus , Vetores Genéticos , MicroRNAs , Transdução Genética/métodos , Animais , Células Apresentadoras de Antígenos/imunologia , Sítios de Ligação , Feminino , Terapia Genética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transgenes
13.
Oncogene ; 40(17): 3060-3071, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782545

RESUMO

Recombinant adeno-associated viruses (rAAVs) are well-established vectors for delivering therapeutic genes. However, previous reports have suggested that wild-type AAV is linked to hepatocellular carcinoma, raising concern with the safety of rAAVs. In addition, a recent long-term follow-up study in canines, which received rAAVs for factor VIII gene therapy, demonstrated vector integration into the genome of liver cells, reviving the uncertainty between AAV and cancer. To further explore this relationship, we performed large-scale molecular epidemiology of AAV in resected tumor samples and non-lesion tissues collected from 413 patients, reflecting nine carcinoma types: breast carcinoma, rectal cancer, pancreas carcinoma, brain tumor, hepatoid adenocarcinoma, hepatocellular carcinoma, gastric carcinoma, lung squamous, and adenocarcinoma. We found that over 80% of patients were AAV-positive among all nine types of carcinoma examined. Importantly, the AAV sequences detected in patient-matched tumor and adjacent non-lesion tissues showed no significant difference in incidence, abundance, and variation. In addition, no specific AAV sequences predominated in tumor samples. Our data shows that AAV genomes are equally abundant in tumors and adjacent normal tissues, but lack clonality. The finding critically adds to the epidemiological profile of AAV in humans, and provides insights that may assist rAAV-based clinical studies and gene therapy strategies.


Assuntos
Dependovirus , Vetores Genéticos , DNA Viral , Seguimentos , Terapia Genética , Humanos
14.
Sci Transl Med ; 13(580)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568518

RESUMO

Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can "cloak" the vector from inducing unwanted immune responses in multiple, but not all, models. This "coupled immunomodulation" strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Imunidade Inata , Camundongos , Suínos
15.
Signal Transduct Target Ther ; 6(1): 53, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558455

RESUMO

Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.


Assuntos
Dependovirus/genética , Terapia Genética/tendências , Vetores Genéticos/genética , Lentivirus/genética , Técnicas de Transferência de Genes , Humanos
16.
Mol Ther Methods Clin Dev ; 18: 639-651, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32775498

RESUMO

The gene therapy field has been galvanized by two technologies that have revolutionized treating genetic diseases: vectors based on adeno-associated viruses (AAVs), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas gene-editing tools. When combined into one platform, these safe and broadly tropic biotherapies can be engineered to target any region in the human genome to correct genetic flaws. Unfortunately, few investigations into the design compatibility of CRISPR components in AAV vectors exist. Using AAV-genome population sequencing (AAV-GPseq), we previously found that self-complementary AAV vector designs with strong DNA secondary structures can cause a high degree of truncation events, impacting production and vector efficacy. We hypothesized that the single-guide RNA (sgRNA) scaffold, which contains several loop regions, may also compromise vector integrity. We have therefore advanced the AAV-GPseq method to also interrogate single-strand AAV vectors to investigate whether vector genomes carrying Cas9-sgRNA cassettes can cause truncation events. We found that on their own, sgRNA sequences do not produce a high degree of truncation events. However, we demonstrate that vector genome designs that carry dual sgRNA expression cassettes in tail-to-tail configurations lead to truncations. In addition, we revealed that heterogeneity in inverted terminal repeat sequences in the form of regional deletions inherent to certain AAV vector plasmids can be interrogated.

17.
Nat Commun ; 11(1): 3279, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606306

RESUMO

Recombinant adeno-associated viruses (rAAVs) are currently considered the safest and most reliable gene delivery vehicles for human gene therapy. Three serotype capsids, AAV1, AAV2, and AAV9, have been approved for commercial use in patients, but they may not be suitable for all therapeutic contexts. Here, we describe a novel capsid identified in a human clinical sample by high-throughput, long-read sequencing. The capsid, which we have named AAVv66, shares high sequence similarity with AAV2. We demonstrate that compared to AAV2, AAVv66 exhibits enhanced production yields, virion stability, and CNS transduction. Unique structural properties of AAVv66 visualized by cryo-EM at 2.5-Å resolution, suggest that critical residues at the three-fold protrusion and at the interface of the five-fold axis of symmetry likely contribute to the beneficial characteristics of AAVv66. Our findings underscore the potential of AAVv66 as a gene therapy vector.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Dependovirus/genética , Vetores Genéticos/genética , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/classificação , Sistema Nervoso Central/virologia , Microscopia Crioeletrônica , DNA Viral/análise , DNA Viral/genética , Dependovirus/classificação , Dependovirus/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Filogenia , Sorogrupo , Transdução Genética , Montagem de Vírus/genética
18.
Mol Ther Methods Clin Dev ; 17: 922-935, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32405514

RESUMO

Improper activity of bone-resorbing osteoclasts results in low bone density and deterioration of bone structure, which increase the risk of fractures. Anti-resorptive therapies targeting osteoclasts have proven effective in preserving bone mass, but these therapeutic agents lead to defective new bone formation and numerous potential side effects. In this study, we demonstrate that recombinant adeno-associated virus, serotype 9 (rAAV9) can deliver to osteoclasts an artificial microRNA (amiR) that silences expression of key osteoclast regulators, RANK (receptor activator for nuclear factor κB) and cathepsin K (rAAV9.amiR-rank, rAAV9.amiR-ctsk), to prevent bone loss in osteoporosis. As rAAV9 is highly effective for the transduction of osteoclasts, systemic administration of rAAV9 carrying amiR-rank or amiR-ctsk results in a significant increase of bone mass in mice. Furthermore, the bone-targeting peptide motif (Asp)14 or (AspSerSer)6 was grafted onto the AAV9-VP2 capsid protein, resulting in significant reduction of transgene expression in non-bone peripheral organs. Finally, systemic delivery of bone-targeting rAAV9.amiR-ctsk counteracts bone loss and improves bone mechanical properties in mouse models of postmenopausal and senile osteoporosis. Collectively, inhibition of osteoclast-mediated bone resorption via bone-targeting rAAV9-mediated silencing of ctsk is a promising gene therapy that can preserve bone formation and mitigate osteoporosis, while limiting adverse off-target effects.

19.
Mol Ther ; 28(2): 411-421, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31813800

RESUMO

Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.


Assuntos
Cisterna Magna/metabolismo , Dependovirus/genética , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Transdução Genética , Animais , Catéteres , Sistema Nervoso Central/metabolismo , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Injeções Espinhais , Imageamento por Ressonância Magnética , Modelos Animais , Ovinos , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Transgenes , Gravação em Vídeo
20.
Mol Ther ; 28(2): 422-430, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843447

RESUMO

Short hairpin RNAs that are delivered by recombinant adeno-associated virus (rAAV) have the potential to elicit long-term RNAi therapy for human disease. However, the discovery that short hairpin sequences can cause truncation of the rAAV genome calls into question the efficiency and gene-silencing specificity of this strategy in humans. Here, we report that embedding the guide strand of a small silencing RNA into an artificial microRNA (miRNA) scaffold derived from mouse miRNA-33 ensures rAAV genomic integrity and reduces off-targeting by 10-fold, while maintaining effective in vivo target gene repression in mice.


Assuntos
Dependovirus/genética , Inativação Gênica , Vetores Genéticos/genética , MicroRNAs/genética , Animais , Genoma Viral , Humanos , Camundongos , Conformação de Ácido Nucleico , Interferência de RNA , Estabilidade de RNA , RNA Interferente Pequeno/genética , RNA Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA