Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA ; 29(5): 609-619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754578

RESUMO

Eukaryotic mRNAs are modified at the 5' end with a methylated guanosine (m7G) that is attached to the transcription start site (TSS) nucleotide. The TSS nucleotide is 2'-O-methylated (Nm) by CMTR1 in organisms ranging from insects to human. In mammals, the TSS adenosine can be further N 6 -methylated by RNA polymerase II phosphorylated CTD-interacting factor 1 (PCIF1) to create m6Am. Curiously, the fly ortholog of mammalian PCIF1 is demonstrated to be catalytic-dead, and its functions are not known. Here, we show that Pcif1 mutant flies display a reduced fertility which is particularly marked in females. Deep sequencing analysis of Pcif1 mutant ovaries revealed transcriptome changes with a notable increase in expression of genes belonging to the mitochondrial ATP synthetase complex. Furthermore, the Pcif1 protein is distributed along euchromatic regions of polytene chromosomes, and the Pcif1 mutation behaved as a modifier of position-effect-variegation (PEV) suppressing the heterochromatin-dependent silencing of the white gene. Similar or stronger changes in the transcriptome and PEV phenotype were observed in flies that expressed a cytosolic version of Pcif1. These results point to a nuclear cotranscriptional gene regulatory role for the catalytic-dead fly Pcif1 that is probably based on its conserved ability to interact with the RNA polymerase II carboxy-terminal domain.


Assuntos
Drosophila , RNA Polimerase II , Feminino , Animais , Humanos , Drosophila/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fertilidade/genética , Transcriptoma , Nucleotídeos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
2.
Nat Commun ; 12(1): 4024, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188051

RESUMO

Pseudomonas aeruginosa can cause nosocomial infections, especially in ventilated or cystic fibrosis patients. Highly pathogenic isolates express the phospholipase ExoU, an effector of the type III secretion system that acts on plasma membrane lipids, causing membrane rupture and host cell necrosis. Here, we use a genome-wide screen to discover that ExoU requires DNAJC5, a host chaperone, for its necrotic activity. DNAJC5 is known to participate in an unconventional secretory pathway for misfolded proteins involving anterograde vesicular trafficking. We show that DNAJC5-deficient human cells, or Drosophila flies knocked-down for the DNAJC5 orthologue, are largely resistant to ExoU-dependent virulence. ExoU colocalizes with DNAJC5-positive vesicles in the host cytoplasm. DNAJC5 mutations preventing vesicle trafficking (previously identified in adult neuronal ceroid lipofuscinosis, a human congenital disease) inhibit ExoU-dependent cell lysis. Our results suggest that, once injected into the host cytoplasm, ExoU docks to DNAJC5-positive secretory vesicles to reach the plasma membrane, where it can exert its phospholipase activity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Membrana Celular/patologia , Infecção Hospitalar/microbiologia , Drosophila melanogaster/genética , Genoma Bacteriano/genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Proteínas de Membrana/genética , Chaperonas Moleculares/metabolismo , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo III/metabolismo
3.
Cell Rep ; 32(7): 108038, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814042

RESUMO

The 5' end of eukaryotic mRNAs is protected by the m7G-cap structure. The transcription start site nucleotide is ribose methylated (Nm) in many eukaryotes, whereas an adenosine at this position is further methylated at the N6 position (m6A) by the mammalian Phosphorylated C-terminal domain (CTD)-interacting Factor 1 (PCIF1) to generate m6Am. Here, we show that although the loss of cap-specific m6Am in mice does not affect viability or fertility, the Pcif1 mutants display reduced body weight. Transcriptome analyses of mutant mouse tissues support a role for the cap-specific m6Am modification in stabilizing transcripts. In contrast, the Drosophila Pcif1 is catalytically dead, but like its mammalian counterpart, it retains the ability to associate with the Ser5-phosphorylated CTD of RNA polymerase II (RNA Pol II). Finally, we show that the Trypanosoma Pcif1 is an m6Am methylase that contributes to the N6,N6,2'-O-trimethyladenosine (m62Am) in the hypermethylated cap4 structure of trypanosomatids. Thus, PCIF1 has evolved to function in catalytic and non-catalytic roles.


Assuntos
RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Drosophila melanogaster , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcrição Gênica
4.
Front Cell Dev Biol ; 8: 506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637412

RESUMO

The c-Myc oncogene is a transcription factor that regulates the expression of a very large set of genes mainly involved in cell growth and proliferation. It is overexpressed in more than 70% of human cancers, illustrating the importance of keeping its levels and activity under control. The ubiquitin proteasome system is a major regulator of MYC levels in humans as well as in model organisms such as Drosophila melanogaster. Although the E3 ligases that promote MYC ubiquitination have been largely investigated, the identity and the role of the deubiquitinating enzymes, which counteract their action is only beginning to be unraveled. Using isoform-specific CRISPR-Cas9 mutagenesis, we show that the Drosophila homolog of the Ubiquitin Specific Protease USP36 has different isoforms with specific sub-cellular localizations and that the nucleolar dUSP36-D isoform is specifically required for cell and organismal growth. We also demonstrate that this isoform interacts with dMYC and the E3 ligase AGO and regulates their stability and ubiquitination levels. Furthermore, we show that dUSP36 is ubiquitinated by AGO and is able to self-deubiquitinate. Finally, we provide in vivo evidence supporting the functional relevance of these regulatory relationships. Together these results reveal that dMYC, AGO and dUSP36 form a tripartite, evolutionary conserved complex that acts as a regulatory node to control dMYC protein levels.

5.
Cells ; 7(8)2018 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-30126257

RESUMO

Autophagy is an evolutionary conserved catabolic process that allows for the degradation of intracellular components by lysosomes. This process can be triggered by nutrient deprivation, microbial infections or other challenges to promote cell survival under these stressed conditions. However, basal levels of autophagy are also crucial for the maintenance of proper cellular homeostasis by ensuring the selective removal of protein aggregates and dysfunctional organelles. A tight regulation of this process is essential for cellular survival and organismal health. Indeed, deregulation of autophagy is associated with a broad range of pathologies such as neuronal degeneration, inflammatory diseases, and cancer progression. Ubiquitination and deubiquitination of autophagy substrates, as well as components of the autophagic machinery, are critical regulatory mechanisms of autophagy. Here, we review the main evidence implicating deubiquitinating enzymes (DUBs) in the regulation of autophagy. We also discuss how they may constitute new therapeutic opportunities in the treatment of pathologies such as cancers, neurodegenerative diseases or infections.

6.
PLoS Genet ; 14(6): e1007456, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29933386

RESUMO

Integration and down-regulation of cell growth and differentiation signals rely on plasma membrane receptor endocytosis and sorting towards either recycling vesicles or degradative lysosomes via multivesicular bodies (MVB). In this process, the endosomal sorting complex-III required for transport (ESCRT-III) controls membrane deformation and scission triggering intraluminal vesicle (ILV) formation at early endosomes. Here, we show that the ESCRT-III member CHMP1B can be ubiquitinated within a flexible loop known to undergo conformational changes during polymerization. We demonstrate further that CHMP1B is deubiquitinated by the ubiquitin specific protease USP8 (syn. UBPY) and found fully devoid of ubiquitin in a ~500 kDa large complex that also contains its ESCRT-III partner IST1. Moreover, EGF stimulation induces the rapid and transient accumulation of ubiquitinated forms of CHMP1B on cell membranes. Accordingly, CHMP1B ubiquitination is necessary for CHMP1B function in both EGF receptor trafficking in human cells and wing development in Drosophila. Based on these observations, we propose that CHMP1B is dynamically regulated by ubiquitination in response to EGF and that USP8 triggers CHMP1B deubiquitination possibly favoring its subsequent assembly into a membrane-associated ESCRT-III polymer.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Membrana Celular/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Endocitose/fisiologia , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Ligação Proteica , Transporte Proteico , Ubiquitina/metabolismo , Ubiquitinação
7.
Cell Commun Signal ; 12: 41, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25027767

RESUMO

BACKGROUND: Rapid activation of innate immune defences upon microbial infection depends on the evolutionary conserved NF-κB dependent signals which deregulation is frequently associated with chronic inflammation and oncogenesis. These signals are tightly regulated by the linkage of different kinds of ubiquitin moieties on proteins that modify either their activity or their stability. To investigate how ubiquitin specific proteases (USPs) orchestrate immune signal regulation, we created and screened a focused RNA interference library on Drosophila NF-κB-like pathways Toll and Imd in cultured S2 cells, and further analysed the function of selected genes in vivo. RESULTS: We report here that USP2 and USP34/Puf, in addition to the previously described USP36/Scny, prevent inappropriate activation of Imd-dependent immune signal in unchallenged conditions. Moreover, USP34 is also necessary to prevent constitutive activation of the Toll pathway. However, while USP2 also prevents excessive Imd-dependent signalling in vivo, USP34 shows differential requirement depending on NF-κB target genes, in response to fly infection by either Gram-positive or Gram-negative bacteria. We further show that USP2 prevents the constitutive activation of signalling by promoting Imd proteasomal degradation. Indeed, the homeostasis of the Imd scaffolding molecule is tightly regulated by the linkage of lysine 48-linked ubiquitin chains (K48) acting as a tag for its proteasomal degradation. This process is necessary to prevent constitutive activation of Imd pathway in vivo and is inhibited in response to infection. The control of Imd homeostasis by USP2 is associated with the hydrolysis of Imd linked K48-ubiquitin chains and the synergistic binding of USP2 and Imd to the proteasome, as evidenced by both mass-spectrometry analysis of USP2 partners and by co-immunoprecipitation experiments. CONCLUSION: Our work identified one known (USP36) and two new (USP2, USP34) ubiquitin specific proteases regulating Imd or Toll dependent immune signalling in Drosophila. It further highlights the ubiquitin dependent control of Imd homeostasis and shows a new activity for USP2 at the proteasome allowing for Imd degradation. This study provides original information for the better understanding of the strong implication of USP2 in pathological processes in humans, including cancerogenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Drosophila/imunologia , Drosophila/microbiologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Transdução de Sinais , Receptores Toll-Like/metabolismo , Ubiquitinação
8.
Mol Cell Biol ; 30(8): 1984-96, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20154147

RESUMO

Dynamic interactions between components of the outer (OM) and inner (IM) membranes control a number of critical mitochondrial functions such as channeling of metabolites and coordinated fission and fusion. We identify here the mitochondrial AAA(+) ATPase protein ATAD3A specific to multicellular eukaryotes as a participant in these interactions. The N-terminal domain interacts with the OM. A central transmembrane segment (TMS) anchors the protein in the IM and positions the C-terminal AAA(+) ATPase domain in the matrix. Invalidation studies in Drosophila and in a human steroidogenic cell line showed that ATAD3A is required for normal cell growth and cholesterol channeling at contact sites. Using dominant-negative mutants, including a defective ATP-binding mutant and a truncated 50-amino-acid N-terminus mutant, we showed that ATAD3A regulates dynamic interactions between the mitochondrial OM and IM sensed by the cell fission machinery. The capacity of ATAD3A to impact essential mitochondrial functions and organization suggests that it possesses unique properties in regulating mitochondrial dynamics and cellular functions in multicellular organisms.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Mitocôndrias , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Proteínas de Membrana , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA