Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17404, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258012

RESUMO

There are two major problems in proton therapy. (1) In comparison with the gamma-ray therapy, proton therapy has only ~ 10% greater biological effectiveness, and (2) the risk of the secondary neutrons in proton therapy is another unsolved problem. In this report, the increase of biological effectiveness in proton therapy has been evaluated with better performance than 11B in the presence of two proposed nanomaterials of 157GdF4 and 157Gd doped carbon with the thermal neutron reduction due to the presence of 157Gd isotope. The present study is based on the microanalysis calculations using GEANT4 Monte Carlo tool and GEANT4-DNA package for the strand breaks measurement. It was found that the proposed method will increase the effectiveness corresponding to the alpha particles by more than 100% and also, potentially will decrease the thermal neutrons fluence, significantly. Also, in this work, a discussion is presented on a significant contribution of the secondary alpha particles in total effectiveness in proton therapy.


Assuntos
Nanopartículas , Terapia com Prótons , Terapia com Prótons/métodos , Prótons , Carbono , Nêutrons , Método de Monte Carlo , DNA , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA