Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2525: 267-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836075

RESUMO

Global hypomethylation of genomic DNA is associated with genomic instability and carcinogenic processes. The loss of DNA methylation has been reported in several cancers; therefore, global methylation levels have been considered as biomarkers for cancer diagnosis. Bisulfite conversion analysis has been widely used as the gold standard method for quantification of DNA methylation levels. However, this method requires cumbersome and time-consuming steps. To quantify global DNA methylation levels in homogeneous solutions, we exemplify a sensing system based on bioluminescence resonance energy transfer (BRET) using methyl-CpG binding domain (MBD)-fused firefly luciferase (MBD-FLuc) and unmethyl-CpG binding domain (CXXC)-fused firefly luciferase (CXXC-FLuc). MBD-FLuc and CXXC-FLuc bind to methylated and unmethylated CpGs, respectively, in the genomic DNA to excite BOBO-3, an intercalating dye on genomic DNA. These BOBO-3 emission intensities depend on the methylated and unmethylated CpG content. The global DNA methylation levels can be quantified from the BOBO-3 emission intensities. Moreover, we introduce a multicolor BRET assay using MBD-FLuc and CXXC-fused Oplophorus luciferase (CXXC-OLuc) for the simultaneous quantification of methylated and unmethylated CpG content in genomic DNA. CXXC-OLuc excites the BOBO-1 DNA-intercalating dye depending on the unmethylated CpG content. Thus, the emission intensities of BOBO-1 and BOBO-3 excited by CXXC-OLuc and MBD-FLuc, respectively, can be simultaneously measured, thereby enabling the determination of global DNA methylation level in a single step. Here, we describe the detailed protocols for the expression of MBD-FLuc, CXXC-FLuc, and CXXC-OLuc in Escherichia coli and determine the global DNA methylation levels using these BRET assays.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA , Ilhas de CpG , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transferência de Energia , Luciferases/metabolismo , Luciferases de Vaga-Lume/genética
2.
Anal Chem ; 94(24): 8618-8624, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35657260

RESUMO

5-Methylcytosine (5mC) plays an important role in the regulation of gene expression. Ten-eleven translocation (TET) continuously oxidizes 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). High levels of 5hmC are found in the brain and embryonic stem cells, while global hydroxymethylation levels are reduced in several cancer cells. Moreover, alterations in hydroxymethylation levels occur in neurological diseases, such as Alzheimer's disease and Parkinson's disease. In this study, a convenient sensing method for the determination of global hydroxymethylation levels was developed. A bioluminescence resonance energy transfer (BRET) assay for global methylation level determination has been previously reported. In the assay, BOBO-3 DNA intercalating dye is excited by the bioluminescence of methyl-CpG-binding domain-fused firefly luciferase (MBD-Fluc); that is, the BRET signal depends on the content of methylated CpG on genomic DNA. To develop a hydroxymethylation level sensing method, SET- and RING-associated (SRA) domain of ubiquitin-like with PHD and RING finger domains 2 (UHRF2)-fused Fluc (UHRF2 SRA-Fluc) was prepared. UHRF2 SRA is known to bind to both hydroxymethylated and methylated CpG sites; thus, MBD was utilized to mask the methylated CpG on genomic DNA. We demonstrated that the BRET signal between UHRF2 SRA-Fluc and BOBO-3 depends on the global hydroxymethylation level in the presence of MBD (R2 = 0.99, and relative standard deviation < 2.3%). The limit of detection for hydroxymethylated genomic DNA was 0.75 ng µL-1. In this assay, the global hydroxymethylation level was quantified within 40 min in a single tube, indicating that the assay would be utilized not only for clinical diagnostics but also for the elucidation of 5hmC functions.


Assuntos
5-Metilcitosina , Metilação de DNA , 5-Metilcitosina/metabolismo , Citosina/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transferência de Energia , Luciferases/metabolismo
3.
Anal Bioanal Chem ; 412(22): 5299-5305, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504107

RESUMO

DNA methylation is one of the best studied epigenetic modifications. Alteration of the global DNA methylation level occurs in abnormal cells, such as those associated with cancers and Alzheimer's disease. Several assays are used to determine the global DNA methylation level, including the bisulfite-based assay, high-performance liquid chromatography (HPLC)-based assay, enzyme-linked immunosorbent assay (ELISA), and methyl acceptance assay. However, these assays require several cumbersome steps to detect methylation levels. We developed a simpler enzymatic assay for the quantification of the global DNA methylation level using the Ten-eleven translocation (TET) protein. TET proteins mediate DNA demethylation through the oxidation of 5-methylcytosine (5mC) in CpG in mammalian cells. Succinate is produced during this oxidation reaction, and the amount of succinate produced correlates to the global DNA methylation level. The catalytic domain of the TET2 was expressed in Escherichia coli (E. coli), and the purified TET2 catalytic domain was reacted with human genomic DNA. The reaction solution was used for enzymatic succinate quantification with no purification step. The results showed that the succinate produced through TET-mediated oxidation increased with increasing global DNA methylation levels in human genomic DNA, which was determined using the bisulfite method. These results show that the global DNA methylation level is quantifiable by measuring the amount of succinate produced by the TET2-mediated 5mC oxidation reaction. Graphical abstract.


Assuntos
5-Metilcitosina/metabolismo , Metilação de DNA , Dioxigenases/metabolismo , Cromatografia Líquida de Alta Pressão , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Transferência de Energia , Ensaio de Imunoadsorção Enzimática , Células HeLa , Humanos , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA