Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 872, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620393

RESUMO

Human WIPI ß-propellers function as PI3P effectors in autophagy, with WIPI4 and WIPI3 being able to link autophagy control by AMPK and TORC1 to the formation of autophagosomes. WIPI1, instead, assists WIPI2 in efficiently recruiting the ATG16L1 complex at the nascent autophagosome, which in turn promotes lipidation of LC3/GABARAP and autophagosome maturation. However, the specific role of WIPI1 and its regulation are unknown. Here, we discovered the ABL-ERK-MYC signalling axis controlling WIPI1. As a result of this signalling, MYC binds to the WIPI1 promoter and represses WIPI1 gene expression. When ABL-ERK-MYC signalling is counteracted, increased WIPI1 gene expression enhances the formation of autophagic membranes capable of migrating through tunnelling nanotubes to neighbouring cells with low autophagic activity. ABL-regulated WIPI1 function is relevant to lifespan control, as ABL deficiency in C. elegans increased gene expression of the WIPI1 orthologue ATG-18 and prolonged lifespan in a manner dependent on ATG-18. We propose that WIPI1 acts as an enhancer of autophagy that is physiologically relevant for regulating the level of autophagic activity over the lifespan.


Assuntos
Longevidade , Proteínas Proto-Oncogênicas c-abl , Animais , Humanos , Autofagossomos , Autofagia/genética , Caenorhabditis elegans/genética , Longevidade/genética , Macroautofagia , Proteínas Proto-Oncogênicas c-abl/genética
2.
Oxid Med Cell Longev ; 2018: 4043726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849891

RESUMO

BACKGROUND/AIMS: As autophagy is linked to several pathological conditions, like cancer and neurodegenerative diseases, it is crucial to understand its regulatory signaling network. In this study, we investigated the role of the serum- and glucocorticoid-induced protein kinase 1 (SGK1) in the control of autophagy. METHODS: To measure autophagic activity in vivo, we quantified the abundance of the autophagy conjugates LC3-PE (phosphatidylethanolamine) and ATG12-ATG5 in tissue extracts of SGK1 wild-type (Sgk1+/+) and knockout (Sgk1-/-) mice that were either fed or starved for 24 h prior sacrifice. In vitro, we targeted SGK1 by RNAi using GFP-WIPI1 expressing U-2 OS cells to quantify the numbers of cells displaying newly formed autophagosomes. In parallel, these cells were also assessed with regard to LC3 and ULK1 by quantitative Western blotting. RESULTS: The abundance of both LC3-PE (LC3-II) and ATG12-ATG5 was significantly increased in red muscle tissues of SGK1 knockout mice. This was found in particular in fed conditions, suggesting that SGK1 may keep basal autophagy under control in red muscle in vivo. Under starved conditions, significant differences were observed in SGK1-deficient white muscle tissue and, under fed conditions, also in the liver. In vitro, we found that SGK1 silencing provoked a significant increase of cells displaying WIPI1-positive autophagosomes and autophagosomal LC3 (LC3-II). Moreover, autophagic flux assessments revealed that autophagic degradation significantly increased in the absence of SGK1, strongly suggesting that SGK1 inhibits both autophagosome formation and autophagic degradation in vitro. In addition, more ULK1 protein lacking the inhibitory, TORC1-specific phosphorylation at serine 758 was detected in the absence of SGK1. CONCLUSIONS: Combined, our data strongly support the idea that SGK1 inhibits the process of autophagy. Mechanistically, our data suggest that SGK1 should act upstream of ULK1 in regulating autophagy, and we hypothesize that SGK1 contributes to the regulation of ULK1 gene expression.


Assuntos
Autofagia/efeitos dos fármacos , Proteínas Imediatamente Precoces/uso terapêutico , Músculos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/uso terapêutico , Animais , Proteínas Imediatamente Precoces/farmacologia , Camundongos , Proteínas Serina-Treonina Quinases/farmacologia , Transfecção
3.
Nat Commun ; 8: 15637, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561066

RESUMO

Autophagy is controlled by AMPK and mTOR, both of which associate with ULK1 and control the production of phosphatidylinositol 3-phosphate (PtdIns3P), a prerequisite for autophagosome formation. Here we report that WIPI3 and WIPI4 scaffold the signal control of autophagy upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes. In response to LKB1-mediated AMPK stimulation, WIPI4-ATG2 is released from a WIPI4-ATG2/AMPK-ULK1 complex and translocates to nascent autophagosomes, controlling their size, to which WIPI3, in complex with FIP200, also contributes. Upstream, WIPI3 associates with AMPK-activated TSC complex at lysosomes, regulating mTOR. Our WIPI interactome analysis reveals the scaffold functions of WIPI proteins interconnecting autophagy signal control and autophagosome formation. Our functional kinase screen uncovers a novel regulatory link between LKB1-mediated AMPK stimulation that produces a direct signal via WIPI4, and we show that the AMPK-related kinases NUAK2 and BRSK2 regulate autophagy through WIPI4.


Assuntos
Autofagia , Proteínas de Transporte/química , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/química , Proteínas Relacionadas à Autofagia/química , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Lisossomos/metabolismo , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/química , Ligação Proteica , Conformação Proteica , Proteínas de Transporte Vesicular/química
4.
J Cell Sci ; 128(2): 207-17, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25568150

RESUMO

Autophagy is a pivotal cytoprotective process that secures cellular homeostasis, fulfills essential roles in development, immunity and defence against pathogens, and determines the lifespan of eukaryotic organisms. However, autophagy also crucially contributes to the development of age-related human pathologies, including cancer and neurodegeneration. Macroautophagy (hereafter referred to as autophagy) clears the cytoplasm by stochastic or specific cargo recognition and destruction, and is initiated and executed by autophagy related (ATG) proteins functioning in dynamical hierarchies to form autophagosomes. Autophagosomes sequester cytoplasmic cargo material, including proteins, lipids and organelles, and acquire acidic hydrolases from the lysosomal compartment for cargo degradation. Prerequisite and essential for autophagosome formation is the production of phosphatidylinositol 3-phosphate (PtdIns3P) by phosphatidylinositol 3-kinase class III (PI3KC3, also known as PIK3C3) in complex with beclin 1, p150 (also known as PIK3R4; Vps15 in yeast) and ATG14L. Members of the human WD-repeat protein interacting with phosphoinositides (WIPI) family play an important role in recognizing and decoding the PtdIns3P signal at the nascent autophagosome, and hence function as autophagy-specific PtdIns3P-binding effectors, similar to their ancestral yeast Atg18 homolog. The PtdIns3P effector function of human WIPI proteins appears to be compromised in cancer and neurodegeneration, and WIPI genes and proteins might present novel targets for rational therapies. Here, we summarize the current knowledge on the roles of the four human WIPI proteins, WIPI1-4, in autophagy. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'ERES: sites for autophagosome biogenesis and maturation?' by Jana Sanchez-Wandelmer et al. (J. Cell Sci. 128, 185-192) and 'Membrane dynamics in autophagosome biogenesis' by Sven R. Carlsson and Anne Simonsen (J. Cell Sci. 128, 193-205).


Assuntos
Autofagia/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Fagossomos/genética , Fosfatos de Fosfatidilinositol/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas Nucleares/metabolismo , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fatores de Transcrição/metabolismo , Proteína VPS15 de Distribuição Vacuolar/metabolismo
5.
Biochem Soc Trans ; 41(4): 962-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863164

RESUMO

Autophagy is a catabolic pathway in which the cell sequesters cytoplasmic material, including long-lived proteins, lipids and organelles, in specialized double-membrane vesicles, called autophagosomes. Subsequently, autophagosomes communicate with the lysosomal compartment and acquire acidic hydrolases for final cargo degradation. This process of partial self-eating secures the survival of eukaryotic cells during starvation periods and is critically regulated by mTORC1 (mammalian target of rapamycin complex 1). Under nutrient-poor conditions, inhibited mTORC1 permits localized PtdIns(3)P production at particular membranes that contribute to autophagosome formation. Members of the human WIPI (WD-repeat protein interacting with phosphoinositides) family fulfil an essential role as PtdIns(3)P effectors at the initiation step of autophagosome formation. In the present article, we discuss the role of human WIPIs in autophagy, and the identification of evolutionarily conserved amino acids of WIPI-1 that confer PtdIns(3)P binding downstream of mTORC1 inhibition. We also discuss the PtdIns(3)P effector function of WIPIs in the context of longevity and autophagy-related human diseases, such as cancer and neurodegeneration.


Assuntos
Autofagia , Longevidade , Proteínas de Membrana/fisiologia , Sequência de Aminoácidos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Complexos Multiproteicos/fisiologia , Fosfatidilinositóis/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Serina-Treonina Quinases TOR/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA