Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0120841, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803811

RESUMO

Induced pluripotent stem (iPS) cells provide powerful tools for studying disease mechanisms and developing therapies for diseases. The 8p11 myeloproliferative syndrome (EMS) is an aggressive chronic myeloproliferative disorder (MPD) that is caused by constitutive activation of fibroblast growth factor receptor 1. EMS is rare and, consequently, effective treatment for this disease has not been established. Here, iPS cells were generated from an EMS patient (EMS-iPS cells) to assist the development of effective therapies for EMS. When iPS cells were co-cultured with murine embryonic stromal cells, EMS-iPS cells produced more hematopoietic progenitor and hematopoietic cells, and CD34+ cells derived from EMS-iPS cells exhibited 3.2-7.2-fold more macrophage and erythroid colony forming units (CFUs) than those derived from control iPS cells. These data indicate that EMS-iPS cells have an increased hematopoietic differentiation capacity, which is characteristic of MPDs. To determine whether a tyrosine kinase inhibitor (TKI) could suppress the increased number of CFUs formed by EMS-iPS-induced CD34+ cells, cells were treated with one of four TKIs (CHIR258, PKC 412, ponatinib, and imatinib). CHIR258, PKC 412, and ponatinib reduced the number of CFUs formed by EMS-iPS-induced CD34+ cells in a dose-dependent manner, whereas imatinib did not. Similar effects were observed on primary peripheral blood cells (more than 90% of which were blasts) isolated from the patient. This study provides evidence that the EMS-iPS cell line is a useful tool for the screening of drugs to treat EMS and to investigate the mechanism underlying this disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Translocação Genética , Adolescente , Benzimidazóis/uso terapêutico , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Hematopoese , Humanos , Mesilato de Imatinib/uso terapêutico , Imidazóis/uso terapêutico , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Transtornos Mieloproliferativos/patologia , Piridazinas/uso terapêutico , Quinolonas/uso terapêutico , Estaurosporina/análogos & derivados , Estaurosporina/uso terapêutico
2.
Mol Cell Biol ; 34(11): 1976-90, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24662049

RESUMO

During mouse development, definitive hematopoiesis is first detected around embryonic day 10.5 (E10.5) in the aorta-gonad-mesonephros (AGM) region, which exhibits intra-aortic cell clusters. These clusters are known to contain hematopoietic stem cells (HSCs). On the other hand, it is not clear how the cells in such clusters maintain their HSC phenotype and how they are triggered to differentiate. Here we found that an endodermal transcription factor marker, Sox17, and other F-group (SoxF) proteins, Sox7 and Sox18, were expressed in E10.5 intra-aortic cell clusters. Forced expression of any of these SoxF proteins, particularly Sox17, in E10.5 AGM CD45(low) c-Kit(high) cells, which are the major component of intra-aortic clusters, led to consistent formation of cell clusters in vitro during several passages of cocultures with stromal cells. Cluster-forming cells with constitutive Sox17 expression retained long-term bone marrow reconstitution activity in vivo. Notably, shutdown of exogenously introduced Sox17 gene expression resulted in immediate hematopoietic differentiation. These results indicate that SoxF proteins, especially Sox17, contribute to the maintenance of cell clusters containing HSCs in the midgestation AGM region. Furthermore, SoxF proteins play a pivotal role in controlling the HSC fate decision between indefinite self-renewal and differentiation during fetal hematopoiesis.


Assuntos
Transplante de Medula Óssea , Proteínas HMGB/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição SOXF/genética , Animais , Aorta/embriologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem da Célula/genética , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/embriologia , Proteínas de Fluorescência Verde/genética , Proteínas HMGB/metabolismo , Mesonefro/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição SOXF/metabolismo
3.
Blood ; 121(3): 447-58, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23169777

RESUMO

To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested, only Sox17, a gene encoding a transcription factor of the SOX family, promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However, they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis, hematopoiesis, and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs, thereby regulating hematopoietic development from hESCs/iPSCs.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/fisiologia , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Sangue Fetal/citologia , Fibroblastos/citologia , Hematopoese/genética , Humanos , Lentivirus/genética , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Transdução Genética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA