Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376272

RESUMO

Multi-arm star-shaped block copolymers with precisely tuned nano-architectures are promising candidates for drug delivery. Herein, we developed 4- and 6-arm star-shaped block copolymers consisting of poly(furfuryl glycidol) (PFG) as the core-forming segments and biocompatible poly(ethylene glycol) (PEG) as the shell-forming blocks. The polymerization degree of each block was controlled by adjusting the feeding ratio of a furfuryl glycidyl ether and ethylene oxide. The size of the series of block copolymers was found to be less than 10 nm in DMF. In water, the polymers showed sizes larger than 20 nm, which can be related to the association of the polymers. The star-shaped block copolymers effectively loaded maleimide-bearing model drugs in their core-forming segment with the Diels-Alder reaction. These drugs were rapidly released upon heating via a retro Diels-Alder step. When the star-shaped block copolymers were injected intravenously in mice, they showed prolonged blood circulation, with more than 80% of the injected dose remaining in the bloodstream at 6 h after intravenous injection. These results indicate the potential of the star-shaped PFG-PEG block copolymers as long-circulating nanocarriers.

2.
Macromol Biosci ; 23(5): e2200486, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880189

RESUMO

3D structured cells have great drug screening potential because they mimic in vivo tissues better than 2D cultured cells. In this study, multi-block copolymers composed of poly(2-methoxyethyl acrylate) (PMEA) and polyethylene glycol (PEG) are developed as a new kind of biocompatible polymers. PEG imparts non-cell adhesion while PMEA acts as an anchoring segment to prepare the polymer coating surface. The multi-block copolymers show higher stability in water than PMEA. A specific micro-sized swelling structure composed of a PEG chain is observed in the multi-block copolymer film in water. A single NIH3T3-3-4 spheroid is formed in 3 h on the surface of the multi-block copolymers with 8.4 wt% PEG. However, at a PEG content of 0.7 wt%, spheroid formed after 4 days. The adenosine triphosphate (ATP) activity of cells and the internal necrotic state of the spheroid change depending on PEG loading in the multi-block copolymers. As the formation rate of cell spheroid on low-PEG-ratio multi-block copolymers is slow, internal necrosis of cell spheroid is less likely to occur. Consequently, the cell spheroid formation rate by changing the PEG chain content in multi-block copolymers is successfully controlled. These unique surfaces are suggested to be useful for 3D cell culture.


Assuntos
Materiais Biocompatíveis , Polietilenoglicóis , Animais , Camundongos , Polietilenoglicóis/química , Células NIH 3T3 , Materiais Biocompatíveis/química , Polímeros/química , Água
3.
Cell Rep Methods ; 2(7): 100256, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35880015

RESUMO

Here, we present a methodology based on multiplexed fluorescence screening of two- or three-dimensional cell cultures in a newly designed multichambered microwell chip, allowing direct assessment of drug or immune cell cytotoxic efficacy. We establish a framework for cell culture, formation of tumor spheroids, fluorescence labeling, and imaging of fixed or live cells at various magnifications directly in the chip together with data analysis and interpretation. The methodology is demonstrated by drug cytotoxicity screening using ovarian and non-small cell lung cancer cells and by cellular cytotoxicity screening targeting tumor spheroids of renal carcinoma and ovarian carcinoma with natural killer cells from healthy donors. The miniaturized format allowing long-term cell culture, efficient screening, and high-quality imaging of small sample volumes makes this methodology promising for individualized cytotoxicity tests for precision medicine.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Técnicas de Cultura de Células , Esferoides Celulares
4.
Anal Chem ; 93(46): 15420-15429, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34727692

RESUMO

Cell-surface sialic acids can be metabolically labeled and subsequently modified using bioorthogonal chemistry. The method has great potential for targeted therapy and imaging; however, distinguishing the sialylation of specific cells remains a major challenge. Here, we described a cell-selective metabolic sialylation labeling strategy based on water-soluble polymer carriers presented with pH-responsive N-azidoacetylmannosamine (ManNAz) release. 2-Methacryloyloxyethyl phosphorylcholine contributed to increased water solubility and reduced nonspecific attachment to cells. Lactobionic acid residues, used for cell selectivity, recognized overexpressed receptors on target hepatoma cells and mediated cellular internalization. ManNAz caged by acidic pH-responsive carbonated ester linkage on the polymer was released inside target cells and expressed as azido sialic acid. Additionally, longer copolymer carriers enhanced the metabolic labeling efficiency of sialylation. This approach provides a platform for cell-selective labeling of sialylation and can be applied to high-resolution bioimaging and targeted therapy.


Assuntos
Polímeros , Água , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Ácidos Siálicos , Solubilidade
5.
Sci Rep ; 11(1): 17076, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426602

RESUMO

Multicellular tumor spheroids (MCTSs) can serve as in vitro models for solid tumors and have become widely used in basic cancer research and drug screening applications. The major challenges when studying MCTSs by optical microscopy are imaging and analysis due to light scattering within the 3-dimensional structure. Herein, we used an ultrasound-based MCTS culture platform, where A498 renal carcinoma MCTSs were cultured, DAPI stained, optically cleared and imaged, to connect nuclear segmentation to biological information at the single cell level. We show that DNA-content analysis can be used to classify the cell cycle state as a function of position within the MCTSs. We also used nuclear volumetric characterization to show that cells were more densely organized and perpendicularly aligned to the MCTS radius in MCTSs cultured for 96 h compared to 24 h. The method presented herein can in principle be used with any stochiometric DNA staining protocol and nuclear segmentation strategy. Since it is based on a single counter stain a large part of the fluorescence spectrum is free for other probes, allowing measurements that correlate cell cycle state and nuclear organization with e.g., protein expression or drug distribution within MCTSs.


Assuntos
Ciclo Celular , Esferoides Celulares/metabolismo , Carcinoma de Células Renais/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , DNA/metabolismo , Humanos , Microscopia Confocal/métodos , Sonicação/métodos , Esferoides Celulares/citologia , Células Tumorais Cultivadas
6.
Micromachines (Basel) ; 12(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804708

RESUMO

In cancer research and drug screening, multicellular tumor spheroids (MCTSs) are a popular model to bridge the gap between in vitro and in vivo. However, the current techniques to culture mixed co-culture MCTSs do not mimic the structural architecture and cellular spatial distribution in solid tumors. In this study we present an acoustic trapping-based core-shell MCTSs culture method using sequential seeding of the core and shell cells into microwells coated with a protein repellent coating. Scaffold-free core-shell ovarian cancer OVCAR-8 cell line MCTSs were cultured, stained, cleared and confocally imaged on-chip. Image analysis techniques were used to quantify the shell thickness (23.2 ± 1.8 µm) and shell coverage percentage (91.2 ± 2.8%). We also show that the shell thickness was evenly distributed over the MCTS cores with the exception of being slightly thinner close to the microwell bottom. This scaffold-free core-shell MCTSs formation technique and the analysis tools presented herein could be used as an internal migration assay within the MCTS or to form core-shell MCTS co-cultures to study therapy response or the interaction between tumor and stromal cells.

7.
Anal Chem ; 92(19): 13271-13280, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32900193

RESUMO

Nanoparticle-based probes have great potential for imaging specific biomolecules in signal distinguishing and amplification via Förster resonance energy transfer (FRET). Protein-specific sialylation plays key roles in the regulation of protein structure and function, as well as in various pathophysiological processes. Here, we developed a fluorescent polymeric nanoparticle with a biocompatible hydrophilic thin shell loaded with plentiful dye and used it as the donor to enhance the FRET imaging of cell surface protein-specific sialylation. The hydrophobic core decreased the self-quenching of loaded fluorescent molecules, while the hydrophilic thin shell ensured that the nanoparticles remained on the extracellular surface and guaranteed the FRET effect. Thus, the thin-shell polymeric nanoparticles enhanced the FRET imaging of protein tyrosine kinase-7-specific sialylation on the CCRF-CEM cell surface and showed high sensitivity under drug treatment. This nanoparticle has great potential for elucidating the relationship between dynamic specific glycosylation states and disease processes, as well as for the study of new cell surface imaging methodologies.


Assuntos
Moléculas de Adesão Celular/análise , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Nanopartículas/química , Polímeros/química , Receptores Proteína Tirosina Quinases/análise , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Propriedades de Superfície
8.
Anal Biochem ; 602: 113790, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470345

RESUMO

Cell separation is important in cell therapy and disease diagnosis. Therefore, various cell separation methods have been studied, but cellular damage and the need for pretreatment remain substantial problems. Recently, in the diagnostic field, the detachment and recovery of antibody-captured cells was actively studied to obtain more detailed information on cancer cells. Previously, we have developed a highly efficient cell separation method using microfibers. In the present study, the efficiency of cell capture and release was examined by controlling the molecular mobility of an immobilized antibody to efficiently detect cells with low expression of a marker molecule. We found that improvement in molecular mobility of antibodies enhances cell capture efficiency but decreases the detachment effectiveness of the captured cells. Therefore, the molecular mobility of antibodies can be utilized to control cell capture and release according to the level of expression of the marker molecule.


Assuntos
Anticorpos/química , Reagentes de Ligações Cruzadas/química , Imunoconjugados/química , Peptídeos/química , Polietilenoglicóis/química , Separação Celular , Liberação Controlada de Fármacos , Humanos , Estrutura Molecular , Células Tumorais Cultivadas
9.
Sci Rep ; 10(1): 6110, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273556

RESUMO

In recent years, many types of micro-engineered platform have been fabricated to investigate the influences of surrounding microenvironments on cell migration. Previous researches demonstrated that microgroove-based topographies can influence cell motilities of normal and cancerous cells differently. In this study, the microgroove wall angle was altered from obtuse to acute angles and the resulting differences in the responses of normal and cancer cells were investigated to explore the geometrical characteristics that can efficiently distinguish normal and cancer cells. Interestingly, different trends in cell motilities of normal and cancer cells were observed as the wall angles were varied between 60-120°, and in particular, invasive cancer cells exhibited a unique, oscillatory migratory behavior. Results from the immunostaining of cell mechanotransduction components suggested that this difference stemmed from directional extensions and adhesion behaviors of each cell type. In addition, the specific behaviors of invasive cancer cells were found to be dependent on the myosin II activity, and modulating the activity could revert cancerous behaviors to normal ones. These novel findings on the interactions of acute angle walls and cancer cell migration provide a new perspective on cancer metastasis and additional strategies via microstructure geometries for the manipulations of cell behaviors in microscale biodevices.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Adesão Celular , Linhagem Celular , Dimetilpolisiloxanos/química , Matriz Extracelular/química , Feminino , Humanos , Células MCF-7 , Mecanotransdução Celular , Alicerces Teciduais/química
10.
Nihon Yakurigaku Zasshi ; 153(6): 254-260, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31178529

RESUMO

Various physiological and pathological processes are accompanied with the local acidification of extracellular local pH. However, imaging tools to investigate the spatio-temporal dynamics as well as the functional significance of cell surface pH are limitedly available. We established a novel method of in vitro cell surface pH imaging by using a membrane-anchored pH probe, poly(ethylene glycol)-phospholipid conjugated with fluorescein isothiocyanate (FITC-PEG-lipid). PEG-lipid, amphiphilic synthetic polymer, is a biomaterial originally synthesized for cell-surface engineering for transplantation therapy. When added into the cell culture medium, FITC-PEG-lipid was spontaneously inserted into the plasma membrane via its phospholipid moiety. FITC-PEG-lipid was retained at the extracellular surface due to the hydrophobic PEG moiety. The ratiometric readout of FITC fluorescence was unique to the extracellular pH in the range of weakly alkaline and acidic pH (pH 5.0-7.5). The pH measurement with FITC-PEG-lipid was accurate enough to distinguish the difference of 0.1 pH unit for the external solutions at pH 5.9, 6.0 and 6.1, near the inflection point of fluorescence ratio. The response of FITC-PEG-lipid to the extracellular pH was reversible. Continuous alteration of extracellular pH was successfully visualized by time-lapse imaging analysis. Our study demonstrated that FITC-PEG-lipid is useful as a sensitive and reversible cell surface-anchored pH probe. The simple labeling procedure of FITC-PEG-lipid is advantageous especially when considering its application to high-throughput in vitro assay. Furthermore, PEG-lipid holds a great potential as the membrane anchor of various analytical probes to approach the juxtamembrane environments.


Assuntos
Membrana Celular/química , Concentração de Íons de Hidrogênio , Imagem Óptica , Fosfolipídeos , Polietilenoglicóis , Animais , Fluoresceína-5-Isotiocianato/análogos & derivados , Soroalbumina Bovina
11.
Nihon Yakurigaku Zasshi ; 153(6): 261-266, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31178530

RESUMO

Gastric proton pump (H+,K+-ATPase) which is responsible for H+ secretion of gastric acid (HCl) in gastric parietal cells is the major therapeutic target for treatment of acid-related diseases. H+,K+-ATPase consists of two subunits, a catalytic α-subunit (αHK) and a glycosylated ß-subunit (ßHK). N-glycosylation of ßHK is essential for trafficking and stability of αHK in apical membrane of gastric parietal cells. Terminal sialic acid residues on sugar chains have an important role in various cellular functions. Recently, we succeeded in visualizing the sialylation and desialylation dynamics of ßHK using a fluorescence bioimaging nanoprobe consisting of biocompatible polymers conjugated with lectins for detecting sialic acid. In H+,K+-ATPase-expressing cell lines, rat gastric mucosa, and primary culture of rat gastric parietal cells, fluorescence imaging of sialic acid with the nanoprobe showed that sialylation of ßHK is regulated by intragastric pH and that inhibition of gastric acid secretion induces desialylation of ßHK. In biochemical and pharmacological studies, we revealed that enzyme activity of αHK is negatively regulated by desialylation of ßHK. Our studies uncovered a novel negative-feedback mechanism of H+,K+-ATPase in which sialic acids of ßHK positively regulates H+,K+-ATPase activity, and acidic pH decreases the pump activity by cleaving sialic acids of ßHK. In this topic, we introduce the overview of our research using the bioimaging nanoprobe.


Assuntos
Corantes Fluorescentes , Mucosa Gástrica/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Ácido N-Acetilneuramínico/química , Imagem Óptica , Bombas de Próton/fisiologia , Animais , Ácido Gástrico , Nanopartículas , Ratos
12.
Nihon Yakurigaku Zasshi ; 153(6): 273-277, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31178532

RESUMO

Continuous and real-time measurement of local concentrations of systemically administered drugs in vivo must be crucial for pharmacological studies. Nevertheless, conventional methods require considerable samples quantity and have poor sampling rates. Additionally, they cannot determine how drug kinetics correlates with target function over time. Here, we describe a system with two different sensors. One is a needle-type microsensor composed of boron-doped diamond with a tip of ~40 µm in diameter, and the other is a glass microelectrode. We first tested bumetanide. This diuretic can induce deafness. In the guinea-pig cochlea injected intravenously with bumetanide, the changes of the drug concentration and the extracellular potential underlying hearing were simultaneously measured in real time. We further examined an antiepileptic drug lamotrigine in the rat brain, and tracked its kinetics and at the same time the local field potentials representing neuronal activity. The action of the anticancer reagent doxorubicin was also monitored in the cochlea. This microsensing system may be applied to analyze pharmacokinetics and pharmacodynamics of various drugs at local sites in vivo, and contribute to promoting the pharmacological researches.


Assuntos
Boro , Cóclea/efeitos dos fármacos , Diamante , Doxorrubicina/farmacologia , Microeletrodos , Animais , Encéfalo/efeitos dos fármacos , Bumetanida/farmacologia , Cobaias , Lamotrigina/farmacologia , Neurônios/efeitos dos fármacos , Ratos
13.
Acta Biomater ; 67: 32-41, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29223702

RESUMO

Circulating tumor cells (CTCs) are tumor cells present in the blood. CTCs have attracted much attention as a new tumor marker, because their analysis provides useful information for monitoring cancer progress. In this study, we developed cell-capture and release methods using three-dimensional (3D) microfiber fabrics without damaging the cells. Using functional peptides containing sequences from a polystyrene-binding site and a cleavable site for collagenase type IV, immobilized antibodies on the peptides were able to specifically capture MCF-7 cells in a few minutes and release the captured cells from 3D microfiber fabrics incorporating a vacuum system. The efficiency of cell capture was around 80% and that of the cell release was over 90%. The released cells proliferated normally in culture medium, suggesting that our system will be applicable for the culture and analysis of CTCs. STATEMENT OF SIGNIFICANCE: In this paper, we report cell-capture and release methods using enzyme-cleavable peptides immobilized on microfiber fabrics which has microporous polymeric three-dimensional structures. Detachment and collection of the selectively captured cancer cells are required for ex vivo culture and their further analysis, whereas the cell detachment methods developed so far might cause cell damage, even if cell viability is high enough. Therefore, specific attachment and gentle detachment from the device are required for the accurate analysis of cells. In this study, for capture and release of cancer cells we designed the peptide cleavable by collagenase type IV, which has no target molecule in cells. Our system will be useful for further CTC analysis and might lead to more accurate cancer diagnosis.


Assuntos
Proteínas Imobilizadas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Peptídeos/química , Polímeros/química , Anticorpos/metabolismo , Humanos , Células MCF-7 , Microscopia de Fluorescência , Poliestirenos/química , Técnicas de Microbalança de Cristal de Quartzo
14.
Sci Rep ; 7(1): 17484, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29235482

RESUMO

Various physiological and pathological processes are accompanied with the alteration of pH at extracellular juxtamembrane region. Accordingly, the methods to analyze the cell surface pH have been demanded in biological and medical sciences. In this study, we have established a novel methodology for cell surface pH imaging using poly(ethylene glycol)-phospholipid (PEG-lipid) as a core structure of ratiometric fluorescent probes. PEG-lipid is a synthetic amphiphilic polymer originally developed for the cell surface modification in transplantation therapy. Via its hydrophobic alkyl chains of the phospholipid moiety, PEG-lipid is, when applied extracellularly, spontaneously inserted into the plasma membrane and retained at the surface of the cells. We have demonstrated that the PEG-lipid conjugated with fluorescein isothiocyanate (FITC-PEG-lipid) can be used as a sensitive and reversible cell-surface-anchored pH probe between weakly alkaline and acidic pH with an excellent spatiotemporal resolution. The remarkably simple procedure for cell-surface labeling with FITC-PEG-lipid would also be advantageous when considering its application to high-throughput in vitro assay. This study further indicates that various probes useful for the investigation of juxtamembrane environments could also be developed by using PEG-lipid as the core structure for bio-membrane anchoring.


Assuntos
Membrana Celular/metabolismo , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes , Imagem Óptica , Fosfolipídeos/química , Polietilenoglicóis/química , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Soluções , Espectrometria de Fluorescência
15.
Colloids Surf B Biointerfaces ; 159: 655-661, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866413

RESUMO

Polymer brush, owing to its precisely controllable nanostructure, has great potential for surface modification in the biomedical field. In this study, we evaluated the bio-inertness of polymer brush, monomer monolayers, and polymer-coated surfaces based on their structures, to identify the most effective bio-inert modification. We focused on two well-known bio-inert materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) and ethylene glycol (EG). The amount of adsorbed proteins on the surface was found to be dependent on the monomer unit density in the case of MPC, whereas this correlation was not observed in the case of EG. Cell adhesion was suppressed on the brush structure of both MPC and EG units, regardless of their density. The brush structure of MPC and EG units showed better anti-protein- and anti-cell-adhesion than monolayers and polymer-coated surfaces. Thus, the steric repulsion was not only important in EG units-based surface, but also in MPC-based surface. In addition, multiple polymer layers formed by MPC-based polymer coating also displayed similar properties.


Assuntos
Etilenoglicol/química , Metacrilatos/química , Fosforilcolina/análogos & derivados , Adesão Celular/fisiologia , Fosforilcolina/química , Polímeros/química , Proteínas/química , Propriedades de Superfície
16.
Sci Rep ; 7(1): 4244, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652607

RESUMO

During metastasis, cancer cells are exposed to various three-dimensional microstructures within the body, but the relationship between cancer migration and three-dimensional geometry remain largely unclear. Here, such geometric effects on cancerous cells were investigated by characterizing the motility of various cancer cell types on microgroove-based topographies made of polydimethylsiloxane (PDMS), with particular emphasis on distinguishing cancerous and non-cancerous epithelial cells, as well as understanding the underlying mechanism behind such differences. The 90-degree walls enhanced motility for all cell lines, but the degrees of enhancements were less pronounced for the cancerous cells. Interestingly, while the non-cancerous epithelial cell types conformed to the three-dimensional geometrical cues and migrated along the walls, the cancerous cell types exhibited a unique behavior of climbing upright walls, and this was associated with the inability to form stable, polarized actin cytoskeleton along the walls of the microgrooves. Furthermore, when non-cancerous epithelial cell lines were altered to different levels of polarization capabilities and cancer malignancy or treated with inhibitory drugs, their three-dimensional geometry-dependent motility approached those of cancerous cell lines. Overall, the results suggest that cancerous cells may gradually lose geometrical recognition with increasing cancer malignancy, allowing them to roam freely ignoring three-dimensional geometrical cues during metastasis.


Assuntos
Neoplasias da Mama/patologia , Dimetilpolisiloxanos/química , Mecanotransdução Celular , Lesões Pré-Cancerosas/patologia , Actinas/química , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica/patologia , Metástase Neoplásica
17.
Nat Biomed Eng ; 1(8): 654-666, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31015607

RESUMO

Real-time recording of the kinetics of systemically administered drugs in in vivo microenvironments may accelerate the development of effective medical therapies. However, conventional methods require considerable analyte quantities, have low sampling rates and do not address how drug kinetics correlate with target function over time. Here, we describe the development and application of a drug-sensing system consisting of a glass microelectrode and a microsensor composed of boron-doped diamond with a tip of around 40 µm in diameter. We show that, in the guinea pig cochlea, the system can measure-simultaneously and in real time-changes in the concentration of bumetanide (a diuretic that is ototoxic but applicable to epilepsy treatment) and the endocochlear potential underlying hearing. In the rat brain, we tracked the kinetics of the drug and the local field potentials representing neuronal activity. We also show that the actions of the antiepileptic drug lamotrigine and the anticancer reagent doxorubicin can be monitored in vivo. Our microsensing system offers the potential to detect pharmacological and physiological responses that might otherwise remain undetected.

18.
Sci Technol Adv Mater ; 17(1): 807-815, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933120

RESUMO

Since circulating tumor cells (CTCs) are tumor cells which are found in the blood of cancer patients, CTCs are potential tumor markers, so a rapid isolation of CTCs is desirable for clinical applications. In this paper, a three-dimensional polystyrene (PS) microfiber fabric with vacuum aspiration system was developed for capturing CTCs within a short time. Various microfiber fabrics with different diameters were prepared by the electrospinning method and optimized for contact frequency with cells. Vacuum aspiration utilizing these microfiber fabrics could filter all cells within seconds without mechanical damage. The microfiber fabric with immobilized anti-EpCAM antibodies was able to specifically capture MCF-7 cells that express EpCAM on their surfaces. The specificity of the system was confirmed by monitoring the ability to isolate MCF-7 cells from a mixture containing CCRF-CEM cells that do not express EpCAM. Furthermore, the selective capture ability of the microfiber was retained even when the microfiber was exposed to the whole blood of pigs spiked with MCF-7 cells. The specific cell capture ratio of the vacuum aspiration system utilizing microfiber fabric could be improved by increasing the thickness of the microfiber fabric through electrospinning time.

19.
Biochim Biophys Acta ; 1858(6): 1228-35, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922883

RESUMO

The gastric proton pump (H(+),K(+)-ATPase) consists of a catalytic α-subunit (αHK) and a glycosylated ß-subunit (ßHK). ßHK glycosylation is essential for the apical trafficking and stability of αHK in gastric parietal cells. Here, we report the properties of sialic acids at the termini of the oligosaccharide chains of ßHK. Sialylation of ßHK was found in LLC-PK1 cells stably expressing αHK and ßHK by staining of the cells with lectin-tagged fluorescent polymeric nanoparticles. This sialylation was also confirmed by biochemical studies using sialic acid-binding lectin beads and an anti-ßHK antibody. The sialic acids of ßHK are cleaved enzymatically by neuraminidase (sialidase) and nonenzymatically by an acidic solution (pH5). Interestingly, the enzymatic activity of H(+),K(+)-ATPase was significantly decreased by cleavage of the sialic acids of ßHK. In contrast, ßHK was not sialylated in the gastric tubulovesicles prepared from the stomach of fed hogs. The H(+),K(+)-ATPase activity in these tubulovesicles was not significantly altered by neuraminidase. Importantly, the sialylation of ßHK was observed in the gastric samples prepared from the stomach of famotidine (a histamine H2 receptor antagonist)-treated rats, but not histamine (an acid secretagogue)-treated rats. The enzymatic activity of H(+),K(+)-ATPase in the samples of the famotidine-treated rats was significantly higher than in the histamine-treated rats. The effects of famotidine were weakened by neuraminidase. These results indicate that ßHK is sialylated at neutral or weakly acidic pH, but not at acidic pH, suggesting that the sialic acids of ßHK positively regulate the enzymatic activity of αHK.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Estômago/enzimologia , Animais , Famotidina/farmacologia , ATPase Trocadora de Hidrogênio-Potássio/química , Células LLC-PK1 , Ácido N-Acetilneuramínico/metabolismo , Estômago/efeitos dos fármacos , Suínos
20.
Acta Biomater ; 30: 135-143, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546413

RESUMO

Poly(ethylene glycol)-conjugated phospholipid (PEG-lipid) derivatives spontaneously incorporate into lipid bilayer membranes, thus, they are useful for immobilizing bioactive substances onto cell surfaces. Here, we investigated how the density and molecular weight of PEG molecules influenced immobilization and cellular uptake of a bioactive substance. We analyzed how three biotin-PEG-lipids (1k, 5k, and 40k, with PEG molecular weights: 1kD, 5kD, and 40kD, respectively) interacted with streptavidin on a surface attached to a quartz crystal microbalance with dissipation (QCM-D). We found that the volume excluded by 1k PEG could not effectively prevent adsorption of bovine serum albumin (BSA). In contrast, 5k PEG chains could completely prevent protein adsorption. However, due to strong static repulsion, 40k PEG chains could not be packed at high density. Thus, BSA migrated between PEG chains, and adsorption was not effectively prevented. When streptavidin was added, it bound to multiple neighboring sites on 1k and 5k biotin-PEG-lipids, which reduced chain viscoelasticity. In contrast, streptavidins bound at a one-to-one stoichiometry with the 40k biotin-PEG-lipids, which increased chain viscoelasticity. However, differences in PEG viscoelasticity and PEG molecular weights did not influence cellular uptake of immobilized streptavidin. Therefore, these are not important factors in designing polymers that prevent cellular endocytosis. STATEMENT OF SIGNIFICANCE: Poly(ethylene glycol)-conjugated phospholipid (PEG-lipid) derivatives have been widely used to modify not only liposome surface, but also the surfaces of cells and pancreatic islets for cell transplantation. Since the entire cell surface can be modified with PEG-lipid through hydrophobic interactions, it is a promising approach for improving graft survival in clinical settings. Although the surface modification is protective in the early stages of transplantation, it is important to understand the factors that influence on the cellular uptake. In this study, we examined the influence of the surface density and molecular weights of PEG-lipids on the cellular uptake by QCM-D and cellular experiments. It was found that the differences in viscoelasticity of PEG chain did not affect on the cellular uptake.


Assuntos
Biotina/química , Fosfolipídeos , Polietilenoglicóis , Estreptavidina/química , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Peso Molecular , Fosfolipídeos/química , Fosfolipídeos/farmacocinética , Fosfolipídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Técnicas de Microbalança de Cristal de Quartzo/métodos , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Soroalbumina Bovina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA