Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788110

RESUMO

Glycogen storage disease type 1a (GSD1a) is caused by a congenital deficiency of glucose-6-phosphatase-α (G6Pase-α, encoded by G6PC), which is primarily associated with life-threatening hypoglycemia. Although strict dietary management substantially improves life expectancy, patients still experience intermittent hypoglycemia and develop hepatic complications. Emerging therapies utilizing new modalities such as adeno-associated virus and mRNA with lipid nanoparticles are under development for GSD1a but potentially require complicated glycemic management throughout life. Here, we present an oligonucleotide-based therapy to produce intact G6Pase-α from a pathogenic human variant, G6PC c.648G>T, the most prevalent variant in East Asia causing aberrant splicing of G6PC. DS-4108b, a splice-switching oligonucleotide, was designed to correct this aberrant splicing, especially in liver. We generated a mouse strain with homozygous knockin of this variant that well reflected the pathophysiology of patients with GSD1a. DS-4108b recovered hepatic G6Pase activity through splicing correction and prevented hypoglycemia and various hepatic abnormalities in the mice. Moreover, DS-4108b had long-lasting efficacy of more than 12 weeks in mice that received a single dose and had favorable pharmacokinetics and tolerability in mice and monkeys. These findings together indicate that this oligonucleotide-based therapy could provide a sustainable and curative therapeutic option under easy disease management for GSD1a patients with G6PC c.648G>T.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Hipoglicemia , Humanos , Camundongos , Animais , Oligonucleotídeos/genética , Camundongos Knockout , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Doença de Depósito de Glicogênio Tipo I/complicações , Fígado/patologia , Glucose-6-Fosfatase/genética , Hipoglicemia/genética , Hipoglicemia/prevenção & controle
2.
Nat Commun ; 14(1): 2960, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231012

RESUMO

Mutations in activin receptor-like kinase 2 (ALK2) can cause the pathological osteogenic signaling seen in some patients with fibrodysplasia ossificans progressiva and other conditions such as diffuse intrinsic pontine glioma. Here, we report that intracellular domain of wild-type ALK2 readily dimerizes in response to BMP7 binding to drive osteogenic signaling. This osteogenic signaling is pathologically triggered by heterotetramers of type II receptor kinases and ALK2 mutant forms, which form intracellular domain dimers in response to activin A binding. We develop a blocking monoclonal antibody, Rm0443, that can suppress ALK2 signaling. We solve the crystal structure of the ALK2 extracellular domain complex with a Fab fragment of Rm0443 and show that Rm0443 induces dimerization of ALK2 extracellular domains in a back-to-back orientation on the cell membrane by binding the residues H64 and F63 on opposite faces of the ligand-binding site. Rm0443 could prevent heterotopic ossification in a mouse model of fibrodysplasia ossificans progressiva that carries the human R206H pathogenic mutant.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Animais , Humanos , Camundongos , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Anticorpos Monoclonais/metabolismo , Dimerização , Mutação , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Ossificação Heterotópica/metabolismo , Osteogênese
3.
Obesity (Silver Spring) ; 19(3): 514-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20706204

RESUMO

An obesity-induced diabetes model using genetically normal mouse strains would be invaluable but remains to be established. One reason is that several normal mouse strains are resistant to high-fat diet-induced obesity. In the present study, we show the effectiveness of gold thioglucose (GTG) in inducing hyperphagia and severe obesity in mice, and demonstrate the development of obesity-induced diabetes in genetically normal mouse strains. GTG treated DBA/2, C57BLKs, and BDF1 mice gained weight rapidly and exhibited significant increases in nonfasting plasma glucose levels 8-12 weeks after GTG treatment. These mice showed significantly impaired insulin secretion, particularly in the early phase after glucose load, and reduced insulin content in pancreatic islets. Interestingly, GTG treated C57BL/6 mice did not become diabetic and retained normal early insulin secretion and islet insulin content despite being as severely obese and insulin resistant as the other mice. These results suggest that the pathogenesis of obesity-induced diabetes in GTG-treated mice is attributable to the inability of their pancreatic ß-cells to secrete enough insulin to compensate for insulin resistance. Mice developing obesity-induced diabetes after GTG treatment might be a valuable tool for investigating obesity-induced diabetes. Furthermore, comparing the genetic backgrounds of mice with different susceptibilities to diabetes may lead to the identification of novel genetic factors influencing the ability of pancreatic ß-cells to secrete insulin.


Assuntos
Diabetes Mellitus Experimental/etiologia , Modelos Animais de Doenças , Hiperfagia/induzido quimicamente , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Obesidade Mórbida/complicações , Animais , Aurotioglucose , Glicemia/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Predisposição Genética para Doença , Intolerância à Glucose , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos , Obesidade Mórbida/induzido quimicamente , Obesidade Mórbida/fisiopatologia , Especificidade da Espécie
4.
Biochem Biophys Res Commun ; 323(1): 49-51, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15351699

RESUMO

Sustained hyperleptinemia induced in normal rats causes the rapid disappearance of body fat. This is attributed to a marked increase in uncoupled fatty acid oxidation in the white adipocytes, which also occurs in hyperthyroidism. Because hyperleptinemic rats have normal plasma T3 or T4 levels, we tested the possibility of "localized hyperthyroidism" due to increased conversion of T4 to T3 in the adipose tissue. We therefore induced sustained hyperleptinemia in normal rats by intravenous injection of recombinant adenovirus containing the leptin cDNA (AdCMV-leptin) and measured the mRNA and the activity of enzymes involved in T4 metabolism in the disappearing fat. The epididymal fat pad remnants exhibited a decrease in mRNA of deiodinase 1 and a doubling of deiodinase 2 mRNA (p<0.05), but their enzyme activities did not differ from normoleptinemic controls. To determine if thyroid hormone was required for the fat-wasting action of hyperleptinemia, we infused AdCMV-leptin into rats made athyroid by total thyroidectomy or by methimazole therapy. The fat loss in hyperleptinemic athyroid rats was as great as in euthyroid controls. We conclude that the fat-wasting effect of sustained hyperleptinemia does not involve "local hyperthyroidism" in white adipose tissue and does not require thyroid hormone.


Assuntos
Tecido Adiposo/metabolismo , Leptina/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Peso Corporal , DNA Complementar/metabolismo , Gorduras/metabolismo , Ácidos Graxos/metabolismo , Iodeto Peroxidase/metabolismo , Masculino , Metimazol/farmacologia , Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Zucker , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Hormônios Tireóideos/deficiência , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
5.
Proc Natl Acad Sci U S A ; 101(18): 7106-11, 2004 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15096598

RESUMO

To determine whether the antilipogenic actions of insulin-induced gene 1 (insig-1) demonstrated in cultured preadipocytes also occur in vivo, we infected Zucker diabetic fatty (ZDF) (fa/fa) rats, with recombinant adenovirus containing insig-1 or -2 cDNA. An increase of both proteins appeared in their livers. In control ZDF (fa/fa) rats infected with adenovirus containing the beta-galactosidase (beta-gal) cDNA, triacylglycerols in the liver and plasma rose steeply whereas the insig-infected rats exhibited substantial attenuation of the increase in hepatic steatosis and hyperlipidemia. Insig overexpression was associated with a striking reduction in the elevated level of nuclear sterol regulatory element-binding protein (SREBP)-1c, the activated form of the transcription factor. The mRNA of SREBP-1c lipogenic target enzymes also fell. The mRNA of endogenous insig-1, but not -2a and -2b, was higher in the fatty livers of untreated obese ZDF (fa/fa) rats compared with controls, but the elevation was not sufficient to block the approximately 3-fold increase in SREBP-1c expression and activity. In normal animals, adenovirus-induced overexpression of the insigs reduced the increase in SREBP-1c mRNA and its target enzymes caused by refeeding. The findings demonstrated that both insigs have antilipogenic action when transgenically overexpressed in livers with increased SREBP-1c-mediated lipogenesis. However, the increase in endogenous insig-1 expression associated with augmented lipogenesis may limit it, but is insufficient to prevent it.


Assuntos
Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intracelular , Lipídeos/biossíntese , Fígado/metabolismo , Proteínas de Membrana/genética , Adenoviridae , Animais , Proteínas de Transporte/biossíntese , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Proteínas de Membrana/biossíntese , Obesidade/genética , Obesidade/metabolismo , Ratos , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA