Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Neurobiol ; 77(3): 354-372, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27706918

RESUMO

It is important to study the neural connectivities and functions in primates. For this purpose, it is critical to be able to transfer genes to certain neurons in the primate brain so that we can image the neuronal signals and analyze the function of the transferred gene. Toward this end, our team has been developing gene transfer systems using viral vectors. In this review, we summarize our current achievements as follows. 1) We compared the features of gene transfer using five different AAV serotypes in combination with three different promoters, namely, CMV, mouse CaMKII (CaMKII), and human synapsin 1 (hSyn1), in the marmoset cortex with those in the mouse and macaque cortices. 2) We used target-specific double-infection techniques in combination with TET-ON and TET-OFF using lentiviral retrograde vectors for enhanced visualization of neural connections. 3) We used an AAV-mediated gene transfer method to study the transcriptional control for amplifying fluorescent signals using the TET/TRE system in the primate neocortex. We also established systems for shRNA mediated gene targeting in a neocortical region where a gene is significantly expressed and for expressing the gene using the CMV promoter for an unexpressed neocortical area in the primate cortex using AAV vectors to understand the regulation of downstream genes. Our findings have demonstrated the feasibility of using viral vector mediated gene transfer systems for the study of primate cortical circuits using the marmoset as an animal model. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 354-372, 2017.


Assuntos
Callithrix/fisiologia , Córtex Cerebral/fisiologia , Dependovirus , Técnicas de Transferência de Genes , Vetores Genéticos/fisiologia , Modelos Animais , Rede Nervosa/fisiologia , Animais , Humanos
2.
Cell Rep ; 13(9): 1989-99, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26655910

RESUMO

Two-photon imaging with genetically encoded calcium indicators (GECIs) enables long-term observation of neuronal activity in vivo. However, there are very few studies of GECIs in primates. Here, we report a method for long-term imaging of a GECI, GCaMP6f, expressed from adeno-associated virus vectors in cortical neurons of the adult common marmoset (Callithrix jacchus), a small New World primate. We used a tetracycline-inducible expression system to robustly amplify neuronal GCaMP6f expression and up- and downregulate it for more than 100 days. We succeeded in monitoring spontaneous activity not only from hundreds of neurons three-dimensionally distributed in layers 2 and 3 but also from single dendrites and axons in layer 1. Furthermore, we detected selective activities from somata, dendrites, and axons in the somatosensory cortex responding to specific tactile stimuli. Our results provide a way to investigate the organization and plasticity of cortical microcircuits at subcellular resolution in non-human primates.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Animais , Axônios/metabolismo , Callithrix , Dendritos/metabolismo , Dependovirus/genética , Doxorrubicina/toxicidade , Proteínas Sensoras de Cálcio Intracelular/genética , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Neurônios/efeitos dos fármacos , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/metabolismo , Tetraciclina/farmacologia
3.
eNeuro ; 2(4)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465000

RESUMO

Two-photon microscopy in combination with a technique involving the artificial expression of fluorescent protein has enabled the direct observation of dendritic spines in living brains. However, the application of this method to primate brains has been hindered by the lack of appropriate labeling techniques for visualizing dendritic spines. Here, we developed an adeno-associated virus vector-based fluorescent protein expression system for visualizing dendritic spines in vivo in the marmoset neocortex. For the clear visualization of each spine, the expression of reporter fluorescent protein should be both sparse and strong. To fulfill these requirements, we amplified fluorescent signals using the tetracycline transactivator (tTA)-tetracycline-responsive element system and by titrating down the amount of Thy1S promoter-driven tTA for sparse expression. By this method, we were able to visualize dendritic spines in the marmoset cortex by two-photon microscopy in vivo and analyze the turnover of spines in the prefrontal cortex. Our results demonstrated that short spines in the marmoset cortex tend to change more frequently than long spines. The comparison of in vivo samples with fixed samples showed that we did not detect all existing spines by our method. Although we found glial cell proliferation, the damage of tissues caused by window construction was relatively small, judging from the comparison of spine length between samples with or without window construction. Our new labeling technique for two-photon imaging to visualize in vivo dendritic spines of the marmoset neocortex can be applicable to examining circuit reorganization and synaptic plasticity in primates.

4.
Neurosci Res ; 93: 144-57, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25240284

RESUMO

Here we investigated the transduction characteristics of adeno-associated viral vector (AAV) serotypes 1, 2, 5, 8 and 9 in the marmoset cerebral cortex. Using three constructs that each has hrGFP under ubiquitous (CMV), or neuron-specific (CaMKII and Synapsin I (SynI)) promoters, we investigated (1) the extent of viral spread, (2) cell type tropism, and (3) neuronal transduction efficiency of each serotype. AAV2 was clearly distinct from other serotypes in small spreading and neuronal tropism. We did not observe significant differences in viral spread among other serotypes. Regarding the cell tropism, AAV1, 5, 8 and 9 exhibited mostly glial expression for CMV construct. However, when the CaMKII construct was tested, cortical neurons were efficiently transduced (>∼70% in layer 3) by all serotypes, suggesting that glial expression obscured neuronal expression for CMV construct. For both SynI and CaMKII constructs, we observed generally high-level expression in large pyramidal cells especially in layer 5, as well as in parvalbumin-positive interneurons. The expression from the CaMKII construct was more uniformly observed in excitatory cells compared with SynI construct. Injection of the same viral preparations in mouse and macaque cortex resulted in essentially the same result with some species-specific differences.


Assuntos
Córtex Cerebral/metabolismo , Dependovirus/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Callithrix , Córtex Cerebral/citologia , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Macaca , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Regiões Promotoras Genéticas , Especificidade da Espécie , Sinapsinas/genética , Sinapsinas/metabolismo , Transdução Genética
5.
Front Neural Circuits ; 8: 110, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25278843

RESUMO

Here we present a novel tracing technique to stain projection neurons in Golgi-like detail by double viral infection. We used retrograde lentiviral vectors and adeno-associated viral vectors (AAV) to drive "TET-ON/TET-OFF system" in neurons connecting two regions. Using this method, we successfully labeled the corticothalamic (CT) cells of the mouse somatosensory barrel field (S1BF) and motor cortex (M1) in their entirety. We also labeled contra- and ipsilaterally-projecting corticocortical (CC) cells of M1 by targeting contralateral M1 or ipsilateral S1 for retrograde infection. The strength of this method is that we can observe the morphology of specific projection neuron subtypes en masse. We found that the group of CT cells extends their dendrites and intrinsic axons extensively below but not within the thalamorecipient layer in both S1BF and M1, suggesting that the primary target of this cell type is not layer 4. We also found that both ipsi- and contralateral targeting CC cells in M1 commonly exhibit widespread collateral extensions to contralateral M1 (layers 1-6), bilateral S1 and S2 (layers 1, 5 and 6), perirhinal cortex (layers 1, 2/3, 5, and 6), striatum and claustrum. These findings not only strengthened the previous findings of single cell tracings but also extended them by enabling cross-area comparison of CT cells or comparison of CC cells of two different labeling.


Assuntos
Axônios/fisiologia , Córtex Motor/citologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Córtex Somatossensorial/citologia , Tálamo/citologia , Animais , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Dependovirus/genética , Feminino , Lateralidade Funcional , Vetores Genéticos/fisiologia , Lentivirus/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
6.
Cereb Cortex ; 19(12): 2865-79, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19366867

RESUMO

To understand the relationship between the structure and function of primate neocortical areas at a molecular level, we have been screening for genes differentially expressed across macaque neocortical areas by restriction landmark cDNA scanning (RLCS). Here, we report enriched expression of the paraneoplastic antigen-like 5 gene (PNMA5) in association areas but not in primary sensory areas, with the lowest expression level in primary visual cortex. In situ hybridization in the primary sensory areas revealed PNMA5 mRNA expression restricted to layer II. Along the ventral visual pathway, the expression gradually increased in the excitatory neurons from the primary to higher visual areas. This differential expression pattern was very similar to that of retinol-binding protein (RBP) mRNA, another association-area-enriched gene that we reported previously. Additional expression analysis for comparison of other genes in the PNMA gene family, PNMA1, PNMA2, PNMA3, and MOAP1 (PNMA4), showed that they were widely expressed across areas and layers but without the differentiated pattern of PNMA5. In mouse brains, PNMA1 was only faintly expressed and PNMA5 was not detected. Sequence analysis showed divergence of PNMA5 sequences among mammals. These findings suggest that PNMA5 acquired a certain specialized role in the association areas of the neocortex during primate evolution.


Assuntos
Antígenos de Neoplasias/metabolismo , Aprendizagem por Associação/fisiologia , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Callithrix , Chlorocebus aethiops , Feminino , Expressão Gênica/fisiologia , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Especificidade da Espécie , Relação Estrutura-Atividade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA