Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(51): 56998-57007, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36521877

RESUMO

CeO2 nanocubes with metastable {100} facets and CeO2 nanooctahedrons with the most stable {111} facets are herein fabricated by controlling the morphology and facets of CeO2 nanoparticles. SnO2 nanosheet-based assembled films coated with these CeO2 nanocubes or CeO2 nanooctahedrons yield {100} CeO2 nanocubes/SnO2 nanosheets and {111} CeO2 nanooctahedron/SnO2 nanosheet hybrid gas sensors, respectively. The hybrid sensors with CeO2 nanoparticles exhibited enhanced sensing responses to numerous chemical species relative to a pristine SnO2 nanosheet gas sensor, including acetone, hydrogen, ethanol, ammonia, acetaldehyde, and allyl mercaptan. In particular, the responses of {100} CeO2 nanocubes/SnO2 nanosheets and {111} CeO2 nanooctahedron/SnO2 nanosheet gas sensors to acetone or allyl mercaptan were 6.8 and 10.3 times higher, respectively, than that of the pristine SnO2 nanosheet gas sensor. Furthermore, the sensor response to ammonia was 2.5 times higher than that of a commercial volatile organic compound (VOC) gas sensor (TGS2602, Figaro Engineering Inc.). The CeO2 nanocube-based sensor with exposed metastable {100} facets promotes the adsorption and oxidation of VOCs owing to the higher surface energy of the metastable {100} facets and therefore exhibits a higher sensing performance than the CeO2 nanooctahedron-based sensor with an exposed {111} facet. The developed sensors show excellent potential for the detection of gas markers in human breath and perspiration for disease diagnosis.

2.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269259

RESUMO

Gold nanoparticles (AuNPs) can be used with megavolt (MV) X-rays to exert radiosensitization effects, as demonstrated in cell survival assays and mouse experiments. However, the detailed mechanisms are not clear; besides physical dose enhancement, several chemical and biological processes have been proposed. Reducing the AuNP concentration while achieving sufficient enhancement is necessary for the clinical application of AuNPs. Here, we used positively charged (+) AuNPs to determine the radiosensitization effects of AuNPs combined with MV X-rays on DNA damage in vitro. We examined the effect of low concentrations of AuNPs on DNA damage and reactive oxygen species (ROS) generation. DNA damage was promoted by 1.4 nm +AuNP with dose enhancement factors of 1.4 ± 0.2 for single-strand breaks and 1.2 ± 0.1 for double-strand breaks. +AuNPs combined with MV X-rays induced radiosensitization at the DNA level, indicating that the effects were physical and/or chemical. Although -AuNPs induced similar ROS levels, they did not cause considerable DNA damage. Thus, dose enhancement by low concentrations of +AuNPs may have occurred with the increase in the local +AuNP concentration around DNA or via DNA binding. +AuNPs showed stronger radiosensitization effects than -AuNPs. Combining +AuNPs with MV X-rays in radiation therapy may improve clinical outcomes.

3.
Radiat Oncol ; 11(1): 91, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27386977

RESUMO

BACKGROUND: Biological applications of nanoparticles are rapidly increasing, which introduces new possibilities to improve the efficacy of radiotherapy. Here, we synthesized titanium peroxide nanoparticles (TiOxNPs) and investigated their efficacy as novel agents that can potently enhance the effects of radiation in the treatment of pancreatic cancer. METHODS: TiOxNPs and polyacrylic acid-modified TiOxNPs (PAA-TiOxNPs) were synthesized from anatase-type titanium dioxide nanoparticles (TiO2NPs). The size and morphology of the PAA-TiOxNPs was evaluated using transmission electron microscopy and dynamic light scattering. The crystalline structures of the TiO2NPs and PAA-TiOxNPs with and without X-ray irradiation were analyzed using X-ray absorption. The ability of TiOxNPs and PAA-TiOxNPs to produce reactive oxygen species in response to X-ray irradiation was evaluated in a cell-free system and confirmed by flow cytometric analysis in vitro. DNA damage after X-ray exposure with or without PAA-TiOxNPs was assessed by immunohistochemical analysis of γ-H2AX foci formation in vitro and in vivo. Cytotoxicity was evaluated by a colony forming assay in vitro. Xenografts were prepared using human pancreatic cancer MIAPaCa-2 cells and used to evaluate the inhibition of tumor growth caused by X-ray exposure, PAA-TiOxNPs, and the combination of the two. RESULTS: The core structures of the PAA-TiOxNPs were found to be of the anatase type. The TiOxNPs and PAA-TiOxNPs showed a distinct ability to produce hydroxyl radicals in response to X-ray irradiation in a dose- and concentration-dependent manner, whereas the TiO2NPs did not. At the highest concentration of TiOxNPs, the amount of hydroxyl radicals increased by >8.5-fold following treatment with 30 Gy of radiation. The absorption of PAA-TiOxNPs enhanced DNA damage and resulted in higher cytotoxicity in response to X-ray irradiation in vitro. The combination of the PAA-TiOxNPs and X-ray irradiation induced significantly stronger tumor growth inhibition compared to treatment with either PAA-TiOxNPs or X-ray alone (p < 0.05). No apparent toxicity or weight loss was observed for 43 days after irradiation. CONCLUSIONS: TiOxNPs are potential agents for enhancing the effects of radiation on pancreatic cancer and act via hydroxyl radical production; owing to this ability, they can be used for pancreatic cancer therapy in the future.


Assuntos
Neoplasias Pancreáticas/patologia , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Titânio/farmacologia , Absorciometria de Fóton , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Humanos , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/efeitos da radiação , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Biosci Bioeng ; 111(2): 140-5, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20947422

RESUMO

Recently, a zinc oxide (ZnO)-binding peptide (ZnOBP) has been identified and has been used to assist the synthesis of unique crystalline ZnO particles. We analyzed the influence of ZnOBP on the crystal growth of ZnO structures formed from zinc hydroxide. The addition of ZnOBP in the hydrothermal synthesis of ZnO suppressed [0001] crystal growth in the ZnO particles, indicating that the specificity of the material-binding peptide for specific inorganic crystal faces controlled the crystal growth. Furthermore, the dipeptides with a partial sequence of ZnO-binding "hot spot" in ZnOBP were used to synthesize ZnO particles, and we found that the presence of these dipeptides more strictly suppressed (0001) growth in ZnO crystals than did the complete ZnOBP sequence. These results demonstrate the applicability of dipeptides selected from material-binding peptides to control inorganic crystal growth.


Assuntos
Peptídeos/química , Óxido de Zinco/síntese química , Cristalização , Hidróxidos/química , Nanoestruturas/química , Ligação Proteica , Compostos de Zinco/química
5.
Nanotechnology ; 21(13): 134009, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20208105

RESUMO

Nickel oxide nanoplates were continuously synthesized by hydrothermal reaction using a flow-type reactor. The products had a thickness of approximately 10 nm and a lateral size of 100-500 nm. The nanoplates were purified and drop-cast on a bottom-gate substrate and used as the channel material in a field-effect transistor after annealing at 300 degrees C. The I(d)-V(d) profile showed that the NiO nanoplates worked as the p-type semiconductor. This result suggests that various electronic devices can be prepared using metal oxide nanomaterials, which exhibit various properties including magnetism, ferroelectronics and catalysis as well as stability and safety in air and water.

6.
J Phys Chem B ; 114(1): 480-6, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20000396

RESUMO

Using an artificial peptide library, we have identified a peptide with affinity for ZnO materials that could be used to selectively accumulate ZnO particles on polypropylene-gold plates. In this study, we fused recombinant green fluorescent protein (GFP) with this ZnO-binding peptide (ZnOBP) and then selectively immobilized the fused protein on ZnO particles. We determined an appropriate condition for selective immobilization of recombinant GFP, and the ZnO-binding function of ZnOBP-fused GFP was examined by elongating the ZnOBP tag from a single amino acid to the intact sequence. The fusion of ZnOBP with GFP enabled specific adsorption of GFP on ZnO substrates in an appropriate solution, and thermodynamic studies showed a predominantly enthalpy-dependent electrostatic interaction between ZnOBP and the ZnO surface. The ZnOBP's binding affinity for the ZnO surface increased first in terms of material selectivity and then in terms of high affinity as the GFP-fused peptide was elongated from a single amino acid to intact ZnOBP. We concluded that the enthalpy-dependent interaction between ZnOBP and ZnO was influenced by the presence of not only charged amino acids but also their surrounding residues in the ZnOBP sequence.


Assuntos
Proteínas Imobilizadas/química , Peptídeos/química , Óxido de Zinco/química , Sequência de Aminoácidos , Ouro/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas Imobilizadas/metabolismo , Polipropilenos/química , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA