Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicines (Basel) ; 10(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505064

RESUMO

Background. Many anti-cancer drugs used in clinical practice cause adverse events such as oral mucositis, neurotoxicity, and extravascular leakage. We have reported that two 3-styrylchromone derivatives, 7-methoxy-3-[(1E)-2-phenylethenyl]-4H-1-benzopyran-4-one (Compound A) and 3-[(1E)-2-(4-hydroxyphenyl)ethenyl]-7-methoxy-4H-1-benzopyran-4-one (Compound B), showed the highest tumor-specificity against human oral squamous cell carcinoma (OSCC) cell lines among 291 related compounds. After confirming their superiority by comparing their tumor specificity with newly synthesized 65 derivatives, we investigated the neurotoxicity of these compounds in comparison with four popular anti-cancer drugs. Methods: Tumor-specificity (TSM, TSE, TSN) was evaluated as the ratio of mean CC50 for human normal oral mesenchymal (gingival fibroblast, pulp cell), oral epithelial cells (gingival epithelial progenitor), and neuronal cells (PC-12, SH-SY5Y, LY-PPB6, differentiated PC-12) to OSCC cells (Ca9-22, HSC-2), respectively. Results: Compounds A and B showed one order of magnitude higher TSM than newly synthesized derivatives, confirming its prominent tumor-specificity. Docetaxel showed one order of magnitude higher TSM, but two orders of magnitude lower TSE than Compounds A and B. Compounds A and B showed higher TSM, TSE, and TSN values than doxorubicin, 5-FU, and cisplatin, damaging OSCC cells at concentrations that do not affect the viability of normal epithelial and neuronal cells. QSAR prediction based on the Tox21 database suggested that Compounds A and B may inhibit the signaling pathway of estrogen-related receptors.

2.
Anticancer Res ; 43(8): 3429-3439, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37500171

RESUMO

BACKGROUND/AIM: Hyperthermia (HT), combined with chemotherapy, has been used to treat various types of cancer. This study aimed to investigate the HT-sensitivity of malignant and non-malignant cells, and then evaluate the combination effect of docetaxel (DTX) and a newly synthesized chromone derivative (compound A) with HT. MATERIALS AND METHODS: The number of viable cells was determined using the MTT method. Cell cycle distribution was analyzed using a cell sorter, and DNA fragmentation pattern was detected using agarose gel electrophoresis. RESULTS: Among 12 cultured cells, oral squamous cell carcinoma (OSCC), especially Ca9-22 cells, and myelogenous leukemia cells showed higher sensitivity to HT than lung carcinoma and glioblastoma cell lines, while normal oral cells were the most resistant. Cytotoxicity of DTX on Ca9-22 cells was maximum at 41-42°C and 45~60 min exposure to HT. DXT, compound A, and HT induced G2/M arrest of Ca-22 cells. Mild HT enhanced the DTX- and compound A-induced subG1 arrest, in a synergistic fashion. CONCLUSION: The combination G2/M blockers and mild-HT can potentially be used for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Hipertermia Induzida , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose , Neoplasias Bucais/tratamento farmacológico , Docetaxel/farmacologia , Docetaxel/uso terapêutico
3.
J Antibiot (Tokyo) ; 75(9): 530-533, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35859164

RESUMO

Cell adhesion plays a crucial role in candidiasis through invasion of the human body and obtaining resistance to drugs by forming biofilms. Cell adhesion thus is a critical target for combating candidiasis by preventing the entry of fungal hyphae into the epithelium. We report here that dehydrocurvularin (1), isolated from the marine-derived fungus Curvularia aeria, exhibited anti-fungal activities for Candida albicans and Candida auris. This compound also prevented the adherence of C. albicans to human adenocarcinoma cells. Real-time RT-PCR analysis showed that exposure to 1 results in decreased expression of HWP1, EFG1, and ECE1, genes involved in Candida adhesion to epithelial cells and hyphal morphogenesis.


Assuntos
Adenocarcinoma , Candidíase , Adenocarcinoma/tratamento farmacológico , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Biofilmes , Candida , Candida albicans/genética , Candidíase/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Zearalenona/análogos & derivados
4.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408786

RESUMO

The current anti-cancer treatments are not enough to eradicate tumors, and therefore, new modalities and strategies are still needed. Most tumors generate an inflammatory tumor microenvironment (TME) and maintain the niche for their development. Because of the critical role of inflammation via high-mobility group box 1 (HMGB1)-receptor for advanced glycation end-products (RAGE) signaling pathway in the TME, a novel compound possessing both anti-cancer and anti-inflammatory activities by suppressing the HMGB1-RAGE axis provides an effective strategy for cancer treatment. A recent work of our group found that some anti-cancer 3-styrylchromones have weak anti-inflammatory activities via the suppression of this axis. In this direction, we searched such anti-cancer molecules possessing potent anti-inflammatory activities and discovered 7-methoxy-3-hydroxy-styrylchromone (C6) having dual suppressive activities. Mechanism-of-action studies revealed that C6 inhibited the increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) under the stimulation of HMGB1-RAGE signaling and thereby suppressed cytokine production in macrophage-like RAW264.7 cells. On the other hand, in colorectal cancer HCT116 cells, C6 inhibited the activation of ERK1/2, cyclin-dependent kinase 1, and AKT, down-regulated the protein level of XIAP, and up-regulated pro-apoptotic Bax and caspase-3/7 expression. These alterations are suggested to be involved in the C6-induced suppression of cell cycle/proliferation and initiation of apoptosis in the cancer cells. More importantly, in cancer cells, the treatment of C6 potentiates the anti-cancer effects of DNA-damaging agents. Thus, C6 may be a promising lead for the generation of a novel class of cancer therapeutics.


Assuntos
Neoplasias do Colo , Proteína HMGB1 , Anti-Inflamatórios/farmacologia , Neoplasias do Colo/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína HMGB1/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Microambiente Tumoral
5.
Biosci Rep ; 41(12)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34779485

RESUMO

Collagen-derived dipeptide prolyl-hydroxyproline (Pro-Hyp) directly binds to the forkhead box g1 (Foxg1) protein and causes it to undergo structural alteration. Pro-Hyp also promotes the production of a regulator of osteoblast differentiation, Runt-related transcription factor 2 (Runx2), through Foxg1, inducing osteoblast differentiation. In addition, Pro-Hyp disrupts the interaction between Foxg1 and Runx2, and Foxg1 appears to interact with Runx2 in the absence of Pro-Hyp. To elucidate the mechanism of Pro-Hyp that promotes osteoblast differentiation, we investigated whether Pro-Hyp regulates the Runx2 P1 promoter together with Foxg1. The present study revealed that Pro-Hyp is taken up by osteoblastic cells via the solute carrier family 15 member (Slc15a) 4. In the presence of Pro-Hyp, Runx2 is translocated from the nucleus to the cytoplasm and Foxg1 is translocated from the cytoplasm to the nucleus. We also found that Pro-Hyp promoted the interaction between Forkhead box o1 (Foxo1) and Runx2 and the dissociation of Foxg1 from Runx2. Moreover, we identified the Pro-Hyp response element in the Runx2 distal P1 promoter at nt -375 to -316, including the Runx2 binding sites and Fox core sequence. In the presence of Pro-Hyp, Runx2 is dissociated from the Pro-Hyp response element in the Runx2 distal P1 promoter. Subsequently, Foxg1 and Foxo1 activated the Runx2 promoter by binding to the Pro-Hyp response element. In summary, we delineated the mechanism by which Pro-Hyp stimulates the bone-related Runx2 distal P1 promoter activity in osteoblastic cells through Foxg1, Foxo1, and Runx2.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Dipeptídeos/farmacologia , Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoblastos/efeitos dos fármacos , Regiões Promotoras Genéticas , Ativação Transcricional , Células 3T3 , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Dipeptídeos/metabolismo , Proteína Forkhead Box O1/genética , Fatores de Transcrição Forkhead/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Osteoblastos/metabolismo , Ligação Proteica , Transdução de Sinais
6.
Medicines (Basel) ; 8(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805209

RESUMO

Background: High mobility group box 1 (HMGB1)-receptor for advanced glycation endo-products (RAGE) axis serves as a key player in linking inflammation and carcinogenesis. Recently, papaverine was revealed to suppress the HMGB1-RAGE inflammatory signaling pathway and cancer cell proliferation. Therefore, a dual suppressor targeting this axis is expected to become a new type of therapeutic agent to treat cancer. Methods: Papaverine 3D pharmacophore mimetic compounds were selected by the LigandScout software from our in-house, anti-cancer chemical library and assessed for their anti-inflammatory activities by a HMGB1-RAGE-mediated interleukin-6 production assay using macrophage-like RAW264.7 cells. Molecular-biological analyses, such as Western blotting, were performed to clarify the mechanism of action. Results: A unique 6-methoxy-3-hydroxy-styrylchromone was found to possess potent anti-inflammatory and anti-cancer activities via the suppression of the HMGB1-RAGE-extracellular signal-regulated kinase 1/2 signaling pathway. Furthermore, the 3D pharmacophore-activity relationship analyses revealed that the hydroxyl group at the C4' position of the benzene ring in a 3-styryl moiety was significant in its dual suppressive effects. Conclusions: These findings indicated that this compound may provide a valuable scaffold for the development of a new type of anti-cancer drug possessing anti-inflammatory activity and as a tool for understanding the link between inflammation and carcinogenesis.

7.
Medicines (Basel) ; 7(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036124

RESUMO

Background: Herpes simplex virus (HSV) is usually dormant and becomes apparent when body conditions decline. We investigated the anti-HSV activity of various natural and synthetic compounds for future clinical application. Methods: Mock- and HSV-infected Vero cells were treated for three days with various concentrations of samples. For short exposure, 100-fold concentrated virus were preincubated for 3 min with samples, diluted to normal multiplicity of infection (MOI), before the addition to the cells. Anti-HSV activity was evaluated by the chemotherapy index. Results: Alkaline extracts of the leaves of Sasa sp. (SE) and pine cone (PCE) showed higher anti-HSV activity than 20 Japanese traditional herb medicines (Kampo formulas), four popular polyphenols, and 119 chromone-related compounds. Exposure of HSV to SE or PCE for 3 min almost completely eliminated the infectivity of HSV, whereas much longer exposure time was required for Kakkonto, the most active Kampo formulae. Anti-HSV activity of PCE and Kakkonto could be detected only when they were dissolved by alkaline solution (pH 8.0), but not by neutral buffer (pH 7.4). Anti-HSV activity of SE and povidone iodine was stable if they were diluted with neutral buffer. Conclusions: The present study suggests the applicability of SE and PCE for treatment of oral HSV and possibly other viruses.

8.
Medicines (Basel) ; 7(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858984

RESUMO

Since many anticancer drugs show severe adverse effects such as mucositis, peripheral neurotoxicity, and extravasation, it was crucial to explore new compounds with much reduced adverse effects. Comprehensive investigation with human malignant and nonmalignant cells demonstrated that derivatives of chromone, back-bone structure of flavonoid, showed much higher tumor specificity as compared with three major polyphenols in the natural kingdom, such as lignin-carbohydrate complex, tannin, and flavonoid. A total 291 newly synthesized compounds of 17 groups (consisting of 12 chromones, 2 esters, and 3 amides) gave a wide range of the intensity of tumor specificity, possibly reflecting the fitness for the optimal 3D structure and electric state. Among them, 7-methoxy-3-[(1E)-2-phenylethenyl]-4H-1-benzopyran-4-one (compound 22), which belongs to 3-styrylchromones, showed the highest tumor specificity. 22 induced subG1 and G2 + M cell population in human oral squamous cell carcinoma cell line, with much less keratinocyte toxicity as compared with doxorubicin and 5-FU. However, 12 active compounds selected did not necessarily induce apoptosis and mitotic arrest. This compound can be used as a lead compound to manufacture more active compound.

9.
Anticancer Res ; 40(1): 87-95, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892556

RESUMO

BACKGROUND/AIM: Very few studies are available about the biological activity of 3-styrylchromones. Our previous study demonstrated the importance of methoxy group at 6-position of the chromone ring and hydroxyl group at 4'-position of phenyl group in styryl moiety. As a sequel of this study, we synthesized fourteen compounds that include eight 3-styrylchromones where methoxy group was introduced at 7-position of chromone rings, and then evaluated their tumor-specificity. MATERIALS AND METHODS: Tumor-specificity (TS) was calculated by relative cytotoxicity against human oral squamous cell carcinoma cell lines versus human normal oral cells. Apoptosis induction and growth arrest were monitored by cell-cycle analysis. Quantitative structure-activity relationship analysis of TS was performed with 3,167 chemical descriptors. RESULTS AND DISCUSSION: Two compounds, 7-methoxy-3-[(1E)-2-phenylethenyl]-4H-1-benzopyran-4-one [7] and 3-[(1E)-2-(4-hydroxyphenyl)ethenyl]-7-methoxy-4H-1-benzopyran-4-one [14] showed higher tumor-specificity than doxorubicin and 5-FU, suggesting the importance of methoxy group in 7-position of the chromone ring. These compounds induced the apoptosis and mitotic arrest in HSC-2 cells. The tumor-specificity of 3-styrylchromone derivatives were most correlated with descriptors for molecule shape and electronic charge. The present study suggested that modification by introducing methoxy group at 7-position, instead at 6-position, further increased the tumor-specificity of 3-styrylchromone.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cromonas/química , Cromonas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
10.
Bioorg Med Chem ; 28(1): 115156, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740200

RESUMO

Twenty-seven natural product-like polyprenylated phenols and quinones were synthesized and their neuroprotective activity was tested using human monoamine oxidase B (MAO-B) and SH-SY5Y cells. Eight compounds inhibited MAO-B (IC50 values < 25 µM) and the inhibition mode and molecular docking of two (8c and 16c) were investigated. Compounds inhibiting MAO-B activity were additionally tested for their ability to protect SH-SY5Y cells from peroxide injury. Three derivatives (3c, 8c and 16c) exhibited both MAO-B inhibitory and neuroprotective activity. A structure activity-relationship study showed that a phenolic hydroxyl group and a longer side chain are important for both activities.


Assuntos
Produtos Biológicos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Quinonas/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fenóis/síntese química , Fenóis/química , Quinonas/síntese química , Quinonas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Anticancer Res ; 39(12): 6479-6488, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31810912

RESUMO

BACKGROUND/AIM: 4H-1-Benzopyran-4-one (chromone), present in various flavonoids as a backbone structure, has been used for the synthesis of anticancer drugs. The study aimed at investigating the cytotoxicity of eight 2-arylazolylchromones and twelve 2-triazolylchromones against four human oral squamous cell carcinoma (OSCC) cell lines and three human normal mesenchymal oral cells, and then performed a quantitative structure-activity relationship (QSAR) analysis. MATERIALS AND METHODS: Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The distribution of cells to various phases of cell cycle was determined by cell cycle analysis. A total of 3,218 physicochemical, structural and quantum chemical features were calculated for QSAR analysis from the most stabilized structure optimized using CORINA. RESULTS: 2-[4-(4-fluorophenyl)-1H-imidazol-1-yl]-4H-1-benzopyran-4-one [6] had the highest tumor-specificity (TS), comparable with that of 5-flurouracil (5-FU) and doxorubicin, inducing cytostatic growth inhibition, accumulation of G2+M phase cells with no cells in the G1 phase. All eight 2-triazolylchromones showed much lower tumor-specificity, confirming our previous finding. Tumor-specificity was also correlated with 3D shape, topological shape, size, ionization potential, and the presence of more than two aromatic rings in the molecule and imidazole ring in the nitrogen-containing heterocyclic ring. CONCLUSION: [6] can be a lead compound for designing anticancer drugs.


Assuntos
Antineoplásicos/síntese química , Carcinoma de Células Escamosas/tratamento farmacológico , Cromonas/síntese química , Neoplasias Bucais/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromonas/química , Cromonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Quantitativa Estrutura-Atividade , Teoria Quântica
12.
Anticancer Res ; 39(12): 6489-6498, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31810913

RESUMO

BACKGROUND/AIM: Studies of biological activity of 2-styrylchromone derivatives focusing on antioxidant, anti-inflammatory, antiviral and antitumor activity are limited. In this study, eighteen synthetic 2-styrylchromone derivatives were investigated for their cytotoxicity against human malignant and non-malignant cells, and then subjected to quantitative structure-activity relationship (QSAR) analysis. MATERIALS AND METHODS: Tumor-specificity was calculated by the ratio of mean 50% cytotoxic concentration (CC50) against four normal oral cells to that against oral squamous cell carcinoma cell lines. Induction of apoptosis and growth arrest were evaluated by cell-cycle analysis. For QSAR analysis, 3,117 types of physicochemical, structural, and quantum chemical features were calculated from the most stabilized structure of 2-styrylchromone derivatives. RESULTS: Two 2-styrylchromone derivatives in which a methoxy group was introduced at the 4-position of the benzene ring showed tumor-specificity equivalent to or higher than doxorubicin in TS value. These compounds accumulated the subG1 and G2/M phase cells, suggesting the induction of apoptosis. Their tumor-specificity can be explained mainly by molecular shape and electronic state. CONCLUSION: These findings suggest the applicability of 2-styrylchromone to develop safe and effective anticancer agents as seed compounds.


Assuntos
Antineoplásicos/síntese química , Carcinoma de Células Escamosas/tratamento farmacológico , Cromonas/síntese química , Neoplasias Bucais/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromonas/química , Cromonas/farmacologia , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Quantitativa Estrutura-Atividade
13.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871110

RESUMO

We first demonstrated that long-term increased polyamine (spermine, spermidine, putrescine) intake elevated blood spermine levels in mice and humans, and lifelong consumption of polyamine-rich chow inhibited aging-associated increase in aberrant DNA methylation, inhibited aging-associated pathological changes, and extend lifespan of mouse. Because gene methylation status is closely associated with aging-associated conditions and polyamine metabolism is closely associated with regulation of gene methylation, we investigated the effects of extracellular spermine supplementation on substrate concentrations and enzyme activities involved in gene methylation. Jurkat cells and human mammary epithelial cells were cultured with spermine and/or D,L-alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase. Spermine supplementation inhibited enzymatic activities of adenosylmethionine decarboxylase in both cells. The ratio of decarboxylated S-adenosylmethionine to S-adenosyl-L-methionine increased by DFMO and decreased by spermine. In Jurkat cells cultured with DFMO, the protein levels of DNA methyltransferases (DNMTs) 1, 3A and 3B were not changed, however the activity of the three enzymes markedly decreased. The protein levels of these enzymes were not changed by addition of spermine, DNMT 3A and especially 3B were activated. We show that changes in polyamine metabolism dramatically affect substrate concentrations and activities of enzymes involved in gene methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Espermina/metabolismo , Adenosilmetionina Descarboxilase/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Metilação de DNA/fisiologia , DNA Metiltransferase 3A , Metilases de Modificação do DNA/metabolismo , Eflornitina/metabolismo , Células Epiteliais/metabolismo , Humanos , Células Jurkat , Glândulas Mamárias Humanas/metabolismo , Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/metabolismo , Espermidina/metabolismo , DNA Metiltransferase 3B
14.
Bioorg Chem ; 83: 432-437, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30428433

RESUMO

A series of eighteen pyrano[4,3-b][1]benzopyranone derivatives (1a-9b) were synthesized, and structure-activity relationships of their monoamine oxidase (MAO) A and B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibitory activities were evaluated. Most of the synthesized compounds exhibited weak inhibitory activity toward MAO-A, whereas compounds 2a, 2b, 4a, 4b, 5a, 5b, 6a, 6b, 8a and 8b showed potent inhibitory activities toward MAO-B. Intriguingly, compounds 5a, 5b, and 8a showed inhibitory activities comparable to pargylin, used as a positive control for MAO-B. Substitution of butoxy at the C3 position or of chlorine at the C8 position of pyrano[4,3-b][1]benzopyranone increased the inhibitory activity of the compound toward MAO-B. The results of a molecular docking study supported this structural effect. Most of the compounds exhibited no or slight inhibitory activity toward AChE and BChE, with exo type compounds bearing a butoxy group, such as compounds 2b, 5b and 8b, showing weak but distinct inhibitory activities toward BChE. This report is the first to identify pyrano[4,3-b][1]benzopyranone derivatives as potent and selective MAO-B inhibitors. 3-Butoxy-8-chloro-pyrano[4,3-b][1]benzopyranone (5b) may be useful as a lead compound for the development of MAO-B inhibitors.


Assuntos
Inibidores da Colinesterase/química , Cromonas/química , Inibidores da Monoaminoxidase/química , Acetilcolinesterase/química , Animais , Sítios de Ligação , Butirilcolinesterase/química , Inibidores da Colinesterase/síntese química , Cromonas/síntese química , Cavalos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/química , Inibidores da Monoaminoxidase/síntese química , Relação Estrutura-Atividade
15.
Medicines (Basel) ; 6(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585249

RESUMO

The present article reviews the research progress of three major polyphenols (tannins, flavonoids and lignin carbohydrate complexes), chromone (backbone structure of flavonoids) and herbal extracts. Chemical modified chromone derivatives showed highly specific toxicity against human oral squamous cell carcinoma cell lines, with much lower toxicity against human oral keratinocytes, as compared with various anticancer drugs. QSAR analysis suggests the possible correlation between their tumor-specificity and three-dimensional molecular shape. Condensed tannins in the tea extracts inactivated the glucosyltransferase enzymes, involved in the biofilm formation. Lignin-carbohydrate complexes (prepared by alkaline extraction and acid-precipitation) and crude alkaline extract of the leaves of Sasa species (SE, available as an over-the-counter drug) showed much higher anti-HIV activity, than tannins, flavonoids and Japanese traditional medicine (Kampo). Long-term treatment with SE and several Kampo medicines showed an anti-inflammatory and anti-oxidant effects in small size of clinical trials. Although the anti-periodontitis activity of synthetic angiotensin II blockers has been suggested in many papers, natural angiotensin II blockers has not yet been tested for their possible anti-periodontitis activity. There should be still many unknown substances that are useful for treating the oral diseases in the natural kingdom.

16.
Anticancer Res ; 38(8): 4449-4457, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30061209

RESUMO

BACKGROUND/AIM: 4H-1-Benzopyran-4-one (chromone) provides a backbone structure for the chemical synthesis of potent anticancer drugs. Since studies of the biological activity of pyrano[4,3-b]chromones are limited, we investigated a total of 20 pyrano[4,3-b]chromones (10 sets of diastereomers) for their cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and human normal oral cells, and then carried out a quantitative structure-activity relationship (QSAR) analysis. MATERIALS AND METHODS: Cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Tumor-specificity (TS) was evaluated by the ratio of mean 50% cytotoxic concentration (CC50) against normal oral cells to that against human OSCC cell lines. Potency-selectivity expression (PSE) value was calculated by dividing the TS value by the CC50 against tumor cells. Apoptosis induction was evaluated by morphological observation, western blot analysis and cell-cycle analysis. For QSAR analysis, a total of 3,072 physicochemical, structural and quantum chemical features were calculated from the most stabilized structure optimized using CORINA. RESULTS: 8-Chloro-4,4a-dihydro-3-methoxy-3-methyl-3H,10H-pyrano[4,3-b][1]benzopyran-10-one (16) and 3-ethoxy-4,4a-dihydro-8-methoxy-3H,10H-pyrano[4,3-b][1]benzopyran-10-one (17) had the highest TS, higher than that of 5-flurouracil and melphalan, without induction of apoptosis. Compound 16 induced cytostatic growth inhibition and much lower cytotoxicity against human normal oral keratinocytes compared to doxorubicin. TS of 20 pyrano[4,3-b]chromones was correlated with 3D structure, polarity, ionic potential and electric state. CONCLUSION: Chemical modification of 16 may be a potential choice for designing a new type of anticancer drug.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cromonas/química , Cromonas/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Criança , Doxorrubicina/farmacologia , Feminino , Humanos , Neoplasias Bucais/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade
17.
Anticancer Res ; 38(8): 4459-4467, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30061210

RESUMO

BACKGROUND/AIM: 4H-1-Benzopyran-4-ones (chromones) provide a backbone structure for the chemical synthesis of potent anticancer drugs. In contrast to 2-(N-cyclicamino)chromones, the biological activity of 3-(N-cyclicamino)chromones has not been reported. In this study, cytotoxicity of 15 3-(N-cyclicamino)chromone derivatives was investigated and subjected to quantitative structure-activity relationship (QSAR) analysis. MATERIALS AND METHODS: Cytotoxicity against four human oral squamous cell carcinoma cell lines and three oral normal mesenchymal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor-specificity (TS) was evaluated as the ratio of mean 50% cytotoxic concentration (CC50) against normal oral cells to that against human oral squamous cell carcinoma cell lines. Potency-selectivity expression (PSE) value was calculated by dividing the TS value by the CC50 against tumor cells. Apoptosis induction was evaluated by morphological observation, western blot analysis and cell-cycle analysis. For QSAR analysis, a total of 3,096 physicochemical, structural and quantum chemical features were calculated from the most stabilized structure optimized using CORINA. RESULTS: 3-(4-phenyl-1-piperazinyl)-4H-1-benzopyran-4-one (3a) had the highest tumor specificity, comparable with that of melphalan, without induction of apoptosis. Compound 3a caused cytostatic growth inhibition and had much lower cytotoxicity against human oral keratinocytes compared to doxorubicin. TS of the 15 3-(N-cyclicamino)chromones was correlated with 3D structure and lipophilicity. CONCLUSION: Chemical modification of 3a may be a potential choice for designing a new type of anticancer drug.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cromonas/química , Cromonas/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade
18.
Anticancer Res ; 38(7): 3897-3906, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29970510

RESUMO

BACKGROUND/AIM: 4H-1-Benzopyran-4-ones (chromones) have provided backbone structure for the chemical synthesis of potent anticancer drugs. In this study, the cytotoxicity of fifteen 2-(N-cyclicamino)chromone derivatives was investigated and subjected to quantitative structure-activity relationship (QSAR) analysis. MATERIALS AND METHODS: Cytotoxicity against four human oral squamous cell carcinoma cell lines and three oral normal mesenchymal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor specificity (TS) was evaluated by ratio of mean 50% cytotoxic concentration (CC50) against normal oral cells to that against human oral squamous cell carcinoma cell lines. Potency-selectivity expression (PSE) value was calculated by dividing the TS value by CC50 against tumor cells. Apoptosis induction was evaluated by morphological observation, western blot analysis and cell-cycle analysis. For QSAR analysis, a total of 3,089 physicochemicals, structural and quantum chemical features were calculated from the most stabilized structure optimized using Corina. RESULTS: 7-Methoxy-2-(4-morpholinyl)-4H-1-benzopyran-4-one (5c) showed highest tumor-specificity, comparable with that of doxorubicin, without inducing apoptosis. Tumor-specificity of fifteen 2-(N-cyclicamino) chromones was correlated with molecular shape, especially 3D-structure. CONCLUSION: Chemical modification of 5c may be a potential choice for designing a new type of anticancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cromonas/química , Cromonas/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Relação Quantitativa Estrutura-Atividade
19.
Stroke ; 49(7): 1727-1733, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29866754

RESUMO

BACKGROUND AND PURPOSE: We recently found that acrolein (CH2=CH-CHO) is more strongly involved in brain infarction compared with reactive oxygen species. In this study, we looked for acrolein scavengers with less side effects. METHODS: Photochemically induced thrombosis model mice were prepared by injection of Rose Bengal. Effects of N-acetylcysteine (NAC) derivatives on brain infarction were evaluated using the public domain National Institutes of Health image program. RESULTS: NAC, NAC ethyl ester, and NAC benzyl ester (150 mg/kg) were administered intraperitoneally at the time of induction of ischemia, or these NAC derivatives (50 mg/kg) were administered 3× at 24-h intervals before induction of ischemia and 1 more administration at the time of induction of ischemia. The size of brain infarction decreased in the order NAC benzyl ester>NAC ethyl ester>NAC in both experimental conditions. Detoxification of acrolein occurred through conjugation of acrolein with glutathione, which was catalyzed by glutathione S-transferases, rather than direct conjugation between acrolein and NAC derivatives. The level of glutathione S-transferases at the locus of brain infarction was in the order of administration of NAC benzyl ester>NAC ethyl ester>NAC>no NAC derivatives, suggesting that NAC derivatives stabilize glutathione S-transferases. CONCLUSIONS: The results indicate that detoxification of acrolein by NAC derivatives is caused through glutathione conjugation with acrolein catalyzed by glutathione S-transferases, which can be stabilized by NAC derivatives. This is a new concept of acrolein detoxification by NAC derivatives.


Assuntos
Acetilcisteína/uso terapêutico , Infarto Encefálico/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Acroleína/metabolismo , Animais , Encéfalo/metabolismo , Infarto Encefálico/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glutationa/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo
20.
Anticancer Res ; 38(6): 3283-3290, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29848675

RESUMO

BACKGROUND/AIM: The furo[2,3-b]chromone derivatives are natural products that have been used as folklore medicines for various diseases. Here, the cytotoxicity of 12 synthesized furo[2,3-b]chromone derivatives was investigated and subjected to quantitative structure-activity relationship (QSAR) analysis. MATERIALS AND METHODS: Cytotoxicity against three human oral squamous cell carcinoma cell lines and three types of oral normal mesenchymal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor specificity (TS) was evaluated as the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against carcinoma cell lines. Potency-selectivity expression (PSE) was calculated by dividing the TS value by CC50 against tumor cells. Apoptosis induction was evaluated by cell morphology and caspase-3 activation. Morphological changes were monitored under light microscopy. For QSAR analysis, 288 physicochemical, structural and quantum chemical features were calculated from the most stabilized structure optimized using Corina. RESULTS: Four furo[2,3-b]chromone derivatives showed relatively strong tumor selectivity. In particular, the derivatives with phenylethenyl and methoxy groups showed the highest TS, equivalent to that of melphalan, although their PSE values did not reach those of doxorubicin and 5-fluorouracil. Microscopical observation demonstrated that at cytotoxic concentrations, (2R,3aR,9aR)-rac-3a,9a-dihydro-7-methoxy-4-oxo-2-(2-phenylethenyl)-4H-furo[2,3-b][1]benzopyran-3,3(2H)-dicarboxylic acid 3,3-dimethyl ester and (2R,3aR,9aR)-rac-3a,9a-dihydro-7-methoxy-4-oxo-2-(1-propen-1-yl)-4H-furo[2,3-b][1]benzopyran-3,3(2H)-dicarboxylic acid 3,3-dimethyl ester did not produce a population of shrunken cells typical of apoptotic cells, in contrast to cells treated with actinomycin D. Tumor selectivity of furo[2,3-b]chromone derivatives strongly correlated with features related to the number of intramolecular unsaturated bonds, molecular flexibility, molecular density, lipophilicity, molecular size, and molecular shape. CONCLUSION: Chemical modification of the lead compound may be a potential choice for designing a new type of anticancer drug.


Assuntos
Apoptose/efeitos dos fármacos , Cromonas/química , Cromonas/farmacologia , Relação Quantitativa Estrutura-Atividade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Humanos , Estrutura Molecular , Boca/citologia , Neoplasias Bucais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA