Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(4): 577-597, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967363

RESUMO

RNA splicing factor (SF) gene mutations are commonly observed in patients with myeloid malignancies. Here we showed that SRSF2- and U2AF1-mutant leukemias are preferentially sensitive to PARP inhibitors (PARPi), despite being proficient in homologous recombination repair. Instead, SF-mutant leukemias exhibited R-loop accumulation that elicited an R-loop-associated PARP1 response, rendering cells dependent on PARP1 activity for survival. Consequently, PARPi induced DNA damage and cell death in SF-mutant leukemias in an R-loop-dependent manner. PARPi further increased aberrant R-loop levels, causing higher transcription-replication collisions and triggering ATR activation in SF-mutant leukemias. Ultimately, PARPi-induced DNA damage and cell death in SF-mutant leukemias could be enhanced by ATR inhibition. Finally, the level of PARP1 activity at R-loops correlated with PARPi sensitivity, suggesting that R-loop-associated PARP1 activity could be predictive of PARPi sensitivity in patients harboring SF gene mutations. This study highlights the potential of targeting different R-loop response pathways caused by spliceosome gene mutations as a therapeutic strategy for treating cancer. SIGNIFICANCE: Spliceosome-mutant leukemias accumulate R-loops and require PARP1 to resolve transcription-replication conflicts and genomic instability, providing rationale to repurpose FDA-approved PARP inhibitors for patients carrying spliceosome gene mutations.


Assuntos
Leucemia , Spliceossomos , Humanos , Spliceossomos/genética , Estruturas R-Loop , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo do DNA , Leucemia/tratamento farmacológico , Leucemia/genética , Fatores de Processamento de RNA/genética , Poli(ADP-Ribose) Polimerase-1/genética
2.
J Cell Sci ; 128(15): 2805-15, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092941

RESUMO

Retrograde trafficking from the Golgi complex to endoplasmic reticulum (ER) through COPI-coated vesicles has been implicated in lipid homeostasis. Here, we find that a block in COPI-dependent retrograde trafficking promotes processing and nuclear translocation of sterol regulatory element binding proteins (SREBPs), and upregulates the expression of downstream genes that are involved in lipid biosynthesis. This elevation in SREBP processing and activation is not caused by mislocalization of S1P or S2P (also known as MBTPS1 and MBTPS2, respectively), two Golgi-resident endoproteases that are involved in SREBP processing, but instead by increased Golgi residence of SREBPs, leading to their increased susceptibility to processing by the endoproteases. Analyses using a processing-defective SREBP mutant suggest that a fraction of SREBP molecules undergo basal cycling between the ER and Golgi in complex with SREBP cleavage-activating protein (SCAP). Furthermore, we show that SCAP alone is retrieved from the Golgi and moves to the ER after processing of SREBP under sterol-deficient conditions. Thus, our observations indicate that COPI-mediated retrograde trafficking is crucial for preventing unnecessary SREBP activation, by retrieving the small amounts of SCAP-SREBP complex that escape from the sterol-regulated ER retention machinery, as well as for the reuse of SCAP.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipogênese/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Esteróis/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Metaloendopeptidases , Pró-Proteína Convertases , Transporte Proteico/fisiologia , Serina Endopeptidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA