Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(11): 5584-5602, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37140056

RESUMO

DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.


Assuntos
Reparo do DNA , Exodesoxirribonucleases , Proteína 2 Homóloga a MutS , Proteína 3 Homóloga a MutS , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , Proteína 2 Homóloga a MutS/metabolismo , Humanos , Linhagem Celular , DNA Helicases/metabolismo , Proteína 3 Homóloga a MutS/metabolismo
2.
Nucleic Acids Res ; 51(5): 2257-2269, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36805268

RESUMO

DNA polymerase θ (POLQ) is a unique DNA polymerase that is able to perform microhomology-mediated end-joining as well as translesion synthesis (TLS) across an abasic (AP) site and thymine glycol (Tg). However, the biological significance of the TLS activity is currently unknown. Herein we provide evidence that the TLS activity of POLQ plays a critical role in repairing complex DNA double-strand breaks (DSBs) induced by high linear energy transfer (LET) radiation. Radiotherapy with high LET radiation such as carbon ions leads to more deleterious biological effects than corresponding doses of low LET radiation such as X-rays. High LET-induced DSBs are considered to be complex, carrying additional DNA damage such as AP site and Tg in close proximity to the DSB sites. However, it is not clearly understood how complex DSBs are processed in mammalian cells. We demonstrated that genetic disruption of POLQ results in an increase of chromatid breaks and enhanced cellular sensitivity following treatment with high LET radiation. At the biochemical level, POLQ was able to bypass an AP site and Tg during end-joining and was able to anneal two single-stranded DNA tails when DNA lesions were located outside the microhomology. This study offers evidence that POLQ is directly involved in the repair of complex DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA , Animais , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Reparo do DNA , DNA/genética , Reparo do DNA por Junção de Extremidades , Mamíferos/genética , DNA Polimerase teta
3.
NAR Cancer ; 2(3): zcaa017, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32885167

RESUMO

DNA polymerase theta (POLQ)-mediated end joining (TMEJ) is a distinct pathway for mediating DNA double-strand break (DSB) repair. TMEJ is required for the viability of BRCA-mutated cancer cells. It is crucial to identify tumors that rely on POLQ activity for DSB repair, because such tumors are defective in other DSB repair pathways and have predicted sensitivity to POLQ inhibition and to cancer therapies that produce DSBs. We define here the POLQ-associated mutation signatures in human cancers, characterized by short insertions and deletions in a specific range of microhomologies. By analyzing 82 COSMIC (Catalogue of Somatic Mutations in Cancer) signatures, we found that BRCA-mutated cancers with a higher level of POLQ expression have a greatly enhanced representation of the small insertion and deletion signature 6, as well as single base substitution signature 3. Using human cancer cells with disruptions of POLQ, we further show that TMEJ dominates end joining of two separated DSBs (distal EJ). Templated insertions with microhomology are enriched in POLQ-dependent distal EJ. The use of this signature analysis will aid in identifying tumors relying on POLQ activity.

4.
Mol Cancer Ther ; 18(12): 2283-2295, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31501277

RESUMO

Incorporation of the clinically active deoxycytidine analogue 2'-C-cyano-2'-deoxy-1-ß-D-arabino-pentofuranosyl-cytosine (CNDAC) into DNA generates single-strand breaks that are subsequently converted to double-strand breaks (DSB). Here, we investigated the cellular manifestations of these breaks that link these mechanisms to cell death, and we further tested the relevance of DNA repair pathways in protection of cells against CNDAC damage. The present investigations demonstrate that following exposure to CNDAC and a wash into drug-free medium, chromosomal aberrations, DNA strand breaks, and multinucleate cells arose. These portended loss of viability and were dependent upon exposure time, CNDAC concentration, and passage through mitosis. Following a pulse incubation with CNDAC, live cell imaging using GFP-tagged histone H2B as a marker demonstrated a normal rate of progression to mitosis, but a concentration-dependent delay in passage to a second mitosis. Progression through mitosis was also delayed and accompanied by formation of multinucleate cells. CNDAC-treated cells lacking XPF-ERCC1 nuclease function showed a 16-fold increase in chromosome aberrations. Chromosomal damage in Rad51D-mutant cells (homologous recombination repair deficient) were even more severely affected with extensive aberrations. Rodent or human Polq (POLQ) mutant cells, defective in Pol θ-mediated alternative end joining, did not show enhanced cellular sensitivity to CNDAC. These findings are consistent with formation of DSBs in the second S-phase following exposure, resulting in chromosome aberrations, aberrant mitoses, and subsequent apoptosis.


Assuntos
Morte Celular/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Mitose/genética , Humanos
5.
EMBO J ; 37(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29789392

RESUMO

To exploit vulnerabilities of tumors, it is urgent to identify associated defects in genome maintenance. One unsolved problem is the mechanism of regulation of DNA double-strand break repair by REV7 in complex with 53BP1 and RIF1, and its influence on repair pathway choice between homologous recombination and non-homologous end-joining. We searched for REV7-associated factors in human cells and found FAM35A, a previously unstudied protein with an unstructured N-terminal region and a C-terminal region harboring three OB-fold domains similar to single-stranded DNA-binding protein RPA, as novel interactor of REV7/RIF1/53BP1. FAM35A re-localized in damaged cell nuclei, and its knockdown caused sensitivity to DNA-damaging agents. In a BRCA1-mutant cell line, however, depletion of FAM35A increased resistance to camptothecin, suggesting that FAM35A participates in processing of DNA ends to allow more efficient DNA repair. We found FAM35A absent in one widely used BRCA1-mutant cancer cell line (HCC1937) with anomalous resistance to PARP inhibitors. A survey of FAM35A alterations revealed that the gene is altered at the highest frequency in prostate cancers (up to 13%) and significantly less expressed in metastatic cases, revealing promise for FAM35A as a therapeutically relevant cancer marker.


Assuntos
Proteína BRCA1/deficiência , Biomarcadores Tumorais/metabolismo , Dano ao DNA , Reparo do DNA , DNA de Neoplasias/metabolismo , Proteínas Mad2/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Proteínas de Ligação a DNA , Células HEK293 , Humanos , Proteínas Mad2/genética , Mutação , Neoplasias/genética , Neoplasias/patologia , Proteínas/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
6.
J Biol Chem ; 290(40): 24278-93, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26269593

RESUMO

DNA polymerase ν (POLN) is one of 16 DNA polymerases encoded in vertebrate genomes. It is important to determine its gene expression patterns, biological roles, and biochemical activities. By quantitative analysis of mRNA expression, we found that POLN from the zebrafish Danio rerio is expressed predominantly in testis. POLN is not detectably expressed in zebrafish embryos or in mouse embryonic stem cells. Consistent with this, injection of POLN-specific morpholino antisense oligonucleotides did not interfere with zebrafish embryonic development. Analysis of transcripts revealed that vertebrate POLN has an unusual gene expression arrangement, sharing a first exon with HAUS3, the gene encoding augmin-like complex subunit 3. HAUS3 is broadly expressed in embryonic and adult tissues, in contrast to POLN. Differential expression of POLN and HAUS3 appears to arise by alternate splicing of transcripts in mammalian cells and zebrafish. When POLN was ectopically overexpressed in human cells, it specifically coimmunoprecipitated with the homologous recombination factors BRCA1 and FANCJ, but not with previously suggested interaction partners (HELQ and members of the Fanconi anemia core complex). Purified zebrafish POLN protein is capable of thymine glycol bypass and strand displacement, with activity dependent on a basic amino acid residue known to stabilize the primer-template. These properties are conserved with the human enzyme. Although the physiological function of pol ν remains to be clarified, this study uncovers distinctive aspects of its expression control and evolutionarily conserved properties of this DNA polymerase.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Regulação da Expressão Gênica , Testículo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Processamento Alternativo , Animais , Proteína BRCA1/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA/química , Dano ao DNA , Éxons , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Ordem dos Genes , Homologia de Genes , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Recombinação Genética , Transgenes , Peixe-Zebra
7.
PLoS Genet ; 10(10): e1004654, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275444

RESUMO

Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ. Using a DNA break end joining assay in cells, we monitored repair of DNA ends with long 3' single-stranded overhangs. End joining events retaining much of the overhang were dependent on POLQ, and independent of Ku70. To analyze the repair function in more detail, we examined immunoglobulin class switch joining between DNA segments in antibody genes. POLQ participates in end joining of a DNA break during immunoglobulin class-switching, producing insertions of base pairs at the joins with homology to IgH switch-region sequences. Biochemical experiments with purified human POLQ protein revealed the mechanism generating the insertions during DNA end joining, relying on the unique ability of POLQ to extend DNA from minimally paired primers. DNA breaks at the IgH locus can sometimes join with breaks in Myc, creating a chromosome translocation. We found a marked increase in Myc/IgH translocations in Polq-defective mice, showing that POLQ suppresses genomic instability and genome rearrangements originating at DNA double-strand breaks. This work clearly defines a role and mechanism for mammalian POLQ in an alternative end joining pathway that suppresses the formation of chromosomal translocations. Our findings depart from the prevailing view that alternative end joining processes are generically translocation-prone.


Assuntos
Instabilidade Cromossômica , DNA Polimerase Dirigida por DNA/metabolismo , Animais , Linfócitos B/fisiologia , Bleomicina/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Células da Medula Óssea/efeitos da radiação , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , DNA Polimerase Dirigida por DNA/genética , Feminino , Células HEK293 , Humanos , Switching de Imunoglobulina , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Camundongos Mutantes , DNA Polimerase teta
8.
Nat Commun ; 4: 2338, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24005565

RESUMO

Mammalian HELQ is a 3'-5' DNA helicase with strand displacement activity. Here we show that HELQ participates in a pathway of resistance to DNA interstrand crosslinks (ICLs). Genetic disruption of HELQ in human cells enhances cellular sensitivity and chromosome radial formation by the ICL-inducing agent mitomycin C (MMC). A significant fraction of MMC sensitivity is independent of the Fanconi anaemia pathway. Sister chromatid exchange frequency and sensitivity to UV radiation or topoisomerase inhibitors is unaltered. Proteomic analysis reveals that HELQ is associated with the RAD51 paralogs RAD51B/C/D and XRCC2, and with the DNA damage-responsive kinase ATR. After treatment with MMC, reduced phosphorylation of the ATR substrate CHK1 occurs in HELQ-knockout cells, and accumulation of G2/M cells is reduced. The results indicate that HELQ operates in an arm of DNA repair and signalling in response to ICL. Further, the association with RAD51 paralogs suggests HELQ as a candidate ovarian cancer gene.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , DNA Helicases/metabolismo , DNA/metabolismo , Rad51 Recombinase/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Linhagem Celular , Quinase 1 do Ponto de Checagem , Variações do Número de Cópias de DNA/genética , Dano ao DNA , Ativação Enzimática/efeitos dos fármacos , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Mitomicina/farmacologia , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ligação Proteica/efeitos dos fármacos , Proteínas Quinases/metabolismo , Troca de Cromátide Irmã/efeitos dos fármacos
9.
Nat Rev Cancer ; 11(2): 96-110, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21258395

RESUMO

There are 15 different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells, and at least one DNA polymerase, Pol ζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes might be viable targets for therapeutic strategies.


Assuntos
Transformação Celular Neoplásica/genética , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias/genética , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular
10.
Chem Res Toxicol ; 23(3): 689-95, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20102227

RESUMO

DNA polymerase nu (POLN or pol nu) is a newly discovered A family polymerase that generates a high error rate when incorporating nucleotides opposite dG; its translesion DNA synthesis (TLS) capability has only been demonstrated for high fidelity replication bypass of thymine glycol lesions. In the current investigation, we describe a novel TLS substrate specificity of pol nu, demonstrating that it is able to bypass exceptionally large DNA lesions whose linkages are through the DNA major groove. Specifically, pol nu catalyzed efficient and high fidelity TLS past peptides linked to N(6)-dA via a reduced Schiff base linkage with a gamma-hydroxypropano-dA. Additionally, pol nu could bypass DNA interstrand cross-links with linkage between N(6)-dAs in complementary DNA strands. However, the chemically identical DNA--peptide and DNA interstrand cross-links completely blocked pol nu when they were located in the minor groove via a N(2)-dG linkage. Furthermore, we showed that pol nu incorporated a nucleotide opposite the 1,N(6)-etheno-dA (epsilondA) in an error-free manner and (+)-trans-anti-benzo[a]pyrene-7,8-dihydrodiol 9,10-epoxide-dA [(+)-BPDE-dA] in an error-prone manner, albeit with a greatly reduced capability. Collectively, these data suggest that although pol nu bypass capacity cannot be generalized to all major groove DNA adducts, this polymerase could be involved in TLS when genomic replication is blocked by extremely large major groove DNA lesions. In view of the recent observation that pol nu may have a role in cellular tolerance to DNA cross-linking agents, our findings provide biochemical evidence for the potential functioning of this polymerase in the bypass of some DNA-protein and DNA-DNA cross-links.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Adutos de DNA , Dano ao DNA , Reparo do DNA , Humanos , Peptídeos/metabolismo , Especificidade por Substrato
11.
Bioorg Med Chem ; 16(10): 5815-25, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18396405

RESUMO

Podophyllotoxin (PT), a strong cytotoxic agent from berberidaceae, has been known to inhibit tubulin polymerization. Although PT has been used for developing anticancer drugs as one of seed compounds, clinical treatment by itself has been unsuccessful because of the side effects, except one example in the treatments of warts. In this study, we screened peptides binding to PT with T7 phage display clonings in order to obtain more information about molecular mechanism of the action. A selected phage clone has a specific amino acid sequence to be SVPSRRRPDGRTHRSSRG. A homology search by protein database BLAST showed that this sequence had a similarity to a hinge domain (HD) of E2 protein in human papillomavirus (HPV) type 1a which is known to cause plantar warts. Surface plasmon resonance (SPR) analysis showed that PT bound to a recombinant HPV 1a E2 protein giving a K(D)=24.1microM which has compared with those of other domains of E2 protein. Also we demonstrated whether PT inhibited HD interaction or not. E7 protein of HPV has been known to be an oncoprotein and was reported to interact with HD of E2 protein. We demonstrated that an E2/E7 interaction was inhibited by the addition of PT in this report. And we showed the bindings of PT to other types of HPV. Our results suggest that PT is potential as a tool for clarifying the molecular mechanism of HPV.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/efeitos dos fármacos , Podofilotoxina/farmacologia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Camundongos , Conformação Molecular , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus , Biblioteca de Peptídeos , Podofilotoxina/síntese química , Podofilotoxina/química , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade , Fatores de Tempo
12.
Genetics ; 168(2): 855-65, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514059

RESUMO

The damaged DNA-binding protein (DDB) complex, thought to recognize (6-4) photoproducts and other lesions in DNA, has been implicated to have a role in global genomic nucleotide excision repair (NER) and E2F-1-mediated transcription. The complex consists of a heterodimer of p127 (DDB1) and p48 (DDB2), the latter also being known as XPE. We reported previously that in Drosophila expression of the DDB1 (D-DDB1) gene is controlled by the DRE/DREF system, and external injury to DNA is not essential for D-DDB1 function. In the present study of the function of D-DDB1 in a multicellular system, we prepared transgenic flies, which were knocked down for the D-DDB1 gene due to RNA interference (RNAi), and performed immunocytochemistry to ascertain the distribution of D-DDB1 in the eye imaginal disc. It was found to be abundant in the anterior of the morphogenetic furrow (MF). Whole-body overexpression of dsRNA of D-DDB1 in Drosophila using a GAL4-UAS targeted expression system induced melanotic tumors and caused complete lethality. When limited to the eye imaginal disc, a severe rough eye phenotype resulted. Correspondingly, all of the D-DDB1 gene knocked-out flies also died. D-DDB1 therefore appears to be an essential development-associated factor in a multicellular organism.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Endodesoxirribonucleases/fisiologia , Olho/crescimento & desenvolvimento , Genes Letais , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Apoptose , Bromodesoxiuridina , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Endodesoxirribonucleases/genética , Olho/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Masculino , Fenótipo , Interferência de RNA , RNA de Cadeia Dupla , Proteínas Recombinantes de Fusão , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia
13.
Biochem Biophys Res Commun ; 323(3): 1024-31, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15381102

RESUMO

We have focused attention on functions of Drosophila damaged DNA binding protein 1 (D-DDB1) in Drosophila hematopoiesis and previously reported that its whole body dsRNA over-expression using a GAL4-UAS targeted expression system results in melanotic tumors and complete lethality. Since the lesions appear to arise as a normal and heritable response to abnormal development, forming groups of cells that are recognized by the immune system and encapsulated in melanized cuticle, D-DDB1 appears to be an essential development-associated factor in Drosophila. To probe the possibility that it contributes to hemocyte development, we used a collagen promoter-GAL4 strain to over-express dsRNA of D-DDB1 in Drosophila hemocytes. The D-DDB1 gene silencing caused melanotic tumors and mortality at the end of larval development. Similarly, it interfered with melanization and synthesis of antimicrobial peptides. Transgenic flies with D-DDB1 gene silencing were found to accumulate abnormal large blood cells, reminiscent of human leukemia, suggesting that D-DDB1 has functions in hemocyte development.


Assuntos
Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/imunologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/imunologia , Drosophila/imunologia , Drosophila/metabolismo , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/imunologia , Hemócitos/metabolismo , Leucemia/imunologia , Leucemia/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Endodesoxirribonucleases/genética , Hemócitos/imunologia , Hemócitos/patologia , Imunidade Inata/imunologia , Especificidade de Órgãos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA