Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 609: 183-188, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35452959

RESUMO

Effective cancer immunotherapy requires physical contact of T cells with cancer cells. However, tumors often constitute special microenvironments that exclude T cells and resist immunotherapy. Cholesterol sulfate (CS) is a product of sulfotransferase SULT2B1b and acts as an endogenous inhibitor of DOCK2, a Rac activator essential for migration and activation of lymphocytes. We have recently shown that cancer-derived CS prevents tumor infiltration by effector T cells. Therefore, SULT2B1b may be a therapeutic target to dampen CS-mediated immune evasion. Here, we identified 3ß-hydroxy-5-cholenoic acid (3ß-OH-5-Chln) as a cell-active inhibitor of SULT2B1b. 3ß-OH-5-Chln inhibited the cholesterol sulfotransferase activity of SULT2B1b in vitro and suppressed CS production from cancer cells expressing SULT2B1b. In vivo administration of 3ß-OH-5-Chln locally reduced CS level in murine CS-producing tumors and increased infiltration of CD8+ T cells. When combined with immune checkpoint blockade or antigen-specific T cell transfer, 3ß-OH-5-Chln suppressed the growth of CS-producing tumors. These results demonstrate that pharmacological inhibition of SULT2B1b can promote antitumor immunity through suppressing CS-mediated T cell exclusion.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Ésteres do Colesterol , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina , Camundongos , Neoplasias/tratamento farmacológico , Sulfotransferases , Microambiente Tumoral
2.
J Mol Graph Model ; 99: 107599, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32348940

RESUMO

CaMKK2 (calcium/calmodulin dependent protein kinase kinase 2) is a serine/threonine protein kinase that regulates phosphorylation of CaM kinases (CaMKs) such as CaMKI, CaMKIV, and AMP-activated protein kinase (AMPK). From a pathological perspective, CaMKK2 plays a role in obesity, diabetes, and prostate cancer. Therefore, CaMKK2 is an attractive target protein for drug design. Here, we tried to find new CaMKK2 inhibitors by using ligand-based and structure-based drug design approaches. From the in silico hit compounds, we identified new inhibitors by using a CaMKK2 kinase assay. We solved X-ray crystallography structures of the CaMKK2-inhibitor complexes and performed Fragment Molecular Orbital (FMO) calculations to analyze the protein-ligand interactions, identify the key residues in inhibitor binding, and quantitatively measure their contribution. We experimentally determined five CaMKK2-inhibitor structures and calculated the binding energies of the inhibitors by the FMO method plus MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) approach. The results showed a high correlation (R = -0.89) between experimentally measured inhibitory activity (pIC50) and the predicted ligand binding energy. We then quantitatively evaluated the contribution of each binding site residue in CaMKK2 by the IFIE (Inter-fragment Interaction Energy)/PIEDA (Pair Interaction Energy Decomposition Analysis) method. The IFIE values indicated that Lys194 and Glu236, which formed hydrogen bonds with the carboxylate groups of the inhibitors, were key residues for ligand binding. PIEDA revealed that the dispersion interaction of inhibitors with hydrophobic residues, such as Ile171, Phe267, and Leu319, contributed highly to ligand binding; we considered that this was due to CH-π interactions with methoxy groups and/or aromatic rings contained in our CaMKK2 inhibitor. These results from the quantitative interaction analysis by the FMO method are useful not only for future CaMMK2 inhibitor development but for application of the FMO method to in silico drug design.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Desenho de Fármacos , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Masculino , Fosforilação
3.
Bioorg Med Chem ; 26(16): 4726-4734, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30121213

RESUMO

Hematopoietic prostaglandin D synthase (H-PGDS) is one of the two enzymes that catalyze prostaglandin D2 synthesis and a potential therapeutic target of allergic and inflammatory responses. To reveal key molecular interactions between a high-affinity ligand and H-PGDS, we designed and synthesized a potent new inhibitor (KD: 0.14 nM), determined the crystal structure in complex with human H-PGDS, and quantitatively analyzed the ligand-protein interactions by the fragment molecular orbital calculation method. In the cavity, 10 water molecules were identified, and the interaction energy calculation indicated their stable binding to the surface amino acids in the cavity. Among them, 6 water molecules locating from the deep inner cavity to the peripheral part of the cavity contributed directly to the ligand binding by forming hydrogen bonding interactions. Arg12, Gly13, Gln36, Asp96, Trp104, Lys112 and an essential co-factor glutathione also had strong interactions with the ligand. A strong repulsive interaction between Leu199 and the ligand was canceled out by forming a hydrogen bonding network with the adjacent conserved water molecule. Our quantitative studies including crystal water molecules explained that compounds with an elongated backbone structure to fit from the deep inner cavity to the peripheral part of the cavity would have strong affinity to human H-PGDS.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Água/química , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/genética , Ligantes , Lipocalinas/antagonistas & inibidores , Lipocalinas/genética , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ressonância de Plasmônio de Superfície , Termodinâmica , Água/metabolismo
4.
Cell Rep ; 19(5): 969-980, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467910

RESUMO

Oncogenic Ras plays a key role in cancer initiation but also contributes to malignant phenotypes by stimulating nutrient uptake and promoting invasive migration. Because these latter cellular responses require Rac-mediated remodeling of the actin cytoskeleton, we hypothesized that molecules involved in Rac activation may be valuable targets for cancer therapy. We report that genetic inactivation of the Rac-specific guanine nucleotide exchange factor DOCK1 ablates both macropinocytosis-dependent nutrient uptake and cellular invasion in Ras-transformed cells. By screening chemical libraries, we have identified 1-(2-(3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-2-oxoethyl)-5-pyrrolidinylsulfonyl-2(1H)-pyridone (TBOPP) as a selective inhibitor of DOCK1. TBOPP dampened DOCK1-mediated invasion, macropinocytosis, and survival under the condition of glutamine deprivation without impairing the biological functions of the closely related DOCK2 and DOCK5 proteins. Furthermore, TBOPP treatment suppressed cancer metastasis and growth in vivo in mice. Our results demonstrate that selective pharmacological inhibition of DOCK1 could be a therapeutic approach to target cancer cell survival and invasion.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Piridonas/farmacologia , Proteínas rac de Ligação ao GTP/efeitos adversos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Pinocitose/efeitos dos fármacos , Piridonas/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
5.
Sci Rep ; 3: 3243, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24263861

RESUMO

Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-ß and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-ß2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-ß type I receptor (TßRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TßRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TßRI blocked the TGF-ß mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-ß2 and functions, at least in part, via directly binding to and activating TßRI, thereby enhancing liver fibrosis.


Assuntos
Hepacivirus/enzimologia , Cirrose Hepática/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Sítios de Ligação , Linhagem Celular , Colágeno Tipo I/metabolismo , Células HEK293 , Humanos , Cirrose Hepática/metabolismo , Camundongos , Camundongos SCID , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/química , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator de Necrose Tumoral alfa , Proteínas não Estruturais Virais/imunologia
6.
Chem Pharm Bull (Tokyo) ; 52(5): 643-5, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15133227

RESUMO

To accelerate the development of drugs against severe acute respiratory syndrome (SARS), we constructed a homology model of the SARS coronavirus main protease using our modeling software, FAMS Ligand&Complex, and released it before the X-ray structure was solved. The X-ray structure showed our model as accurately predicted and useful for structure based drug design.


Assuntos
Antivirais/síntese química , Desenho de Fármacos , Endopeptidases/química , Modelos Moleculares , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Proteínas Virais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases , Avaliação Pré-Clínica de Medicamentos/métodos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA