Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 964: 176306, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38145647

RESUMO

During the production of orexin A and B from preproorexin, a common precursor protein, in hypothalamic orexin neurons, C-terminal peptide (herein called preproorexin C-peptide) is concomitantly produced via post-translational processing. The predicted three-dimensional structure of preproorexin C-peptide is similar among mammalian species, suggestive of a conserved function in the mammalian brain. However, C-peptide has long been regarded as a non-functional peptide. We herein examined the effects of rat and/or mouse preproorexin C-peptide on gene expression and cell viability in cultured rat cerebrocortical cells and on memory behavior in C57BL/6J mice. Rat and mouse C-peptides both increased brain-derived neurotrophic factor (Bdnf) mRNA levels. Moreover, C-peptide enhanced high K+-, glutamate-, and BDNF-induced increases in Bdnf mRNA levels without affecting forskolin-induced Bdnf expression. H-89, a protein kinase A inhibitor, blocked C-peptide-induced Bdnf expression, whereas rolipram, a phosphodiesterase inhibitor, enhanced this effect. Intracellular cyclic AMP concentrations were elevated by C-peptide. These results demonstrate that preproorexin C-peptide promoted Bdnf mRNA expression by a cyclic AMP-dependent mechanism. Eleven amino acids at the N terminus of rat preproorexin C-peptide exerted similar effects on Bdnf expression as full-length preproorexin C-peptide. Preproorexin C-peptide also exerted protective effects against CoCl2-induced neuronal cell death. An intracerebroventricular injection of mouse preproorexin C-peptide induced c-fos and Bdnf expression in the cerebral cortex and hippocampus and enhanced novel object recognition memory in mice. Collectively, the present results show that preproorexin C-peptide is a functional substance, at least in some pharmacological and neuronal settings.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Córtex Cerebral , Orexinas , Fragmentos de Peptídeos , Animais , Camundongos , Ratos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , AMP Cíclico/metabolismo , Camundongos Endogâmicos C57BL , Orexinas/farmacologia , RNA Mensageiro/metabolismo , Fragmentos de Peptídeos/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo
2.
Plant Cell ; 34(10): 3543-3556, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35877068

RESUMO

The prevailing view of intracellular RNA trafficking in eukaryotic cells is that RNAs transcribed in the nucleus either stay in the nucleus or cross the nuclear envelope, entering the cytoplasm for function. However, emerging evidence illustrates that numerous functional RNAs move in the reverse direction, from the cytoplasm to the nucleus. The mechanism underlying RNA nuclear import has not been well elucidated. Viroids are single-stranded circular noncoding RNAs that infect plants. Using Nicotiana benthamiana, tomato (Solanum lycopersicum), and nuclear-replicating viroids as a model, we showed that cellular IMPORTIN ALPHA-4 (IMPa-4) is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (viroid RNA-binding protein 1 [VIRP1]) that binds both IMPa-4 and viroids. Moreover, a conserved C-loop in nuclear-replicating viroids serves as a key signal for nuclear import. Disrupting C-loop impairs VIRP1 binding, viroid nuclear accumulation, and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on VIRP1 for nuclear import. These results advance our understanding of subviral RNA infection and the regulation of RNA nuclear import.


Assuntos
Solanum lycopersicum , Viroides , Transporte Ativo do Núcleo Celular , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Compostos Organofosforados , Doenças das Plantas/genética , RNA , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Viroides/genética , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
3.
Plant Cell ; 23(1): 258-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21258006

RESUMO

Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5'-CGA-3'...5'-GAC-3' flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes.


Assuntos
Células do Mesofilo/virologia , Nicotiana/virologia , Vírus de Plantas/fisiologia , RNA Viral/química , Viroides/fisiologia , Sequência de Bases , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Vírus de Plantas/genética , Análise de Sequência de RNA , Viroides/genética
4.
J Virol ; 81(6): 2980-94, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17202210

RESUMO

RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/fisiologia , Complexo de Inativação Induzido por RNA/metabolismo , Ribonuclease III/metabolismo , Viroides/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Solanum lycopersicum/virologia , Plantas Geneticamente Modificadas , Protoplastos/virologia , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Solanum tuberosum/virologia , Especificidade por Substrato , Nicotiana/genética , Nicotiana/virologia , Transcrição Gênica , Viroides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA