Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
FASEB J ; 37(1): e22680, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468710

RESUMO

Spermatid production is a complex regulatory process in which coordination between hormonal control and apoptosis plays a pivotal role in maintaining a balanced number of sperm cells. Apoptosis in spermatogenesis is controlled by pro-apoptotic and anti-apoptotic molecules. Hormones involved in the apoptotic process during spermatogenesis include gonadotrophins, sex hormones, and glucocorticoid (GC). GC acts broadly as an apoptosis inducer by binding to its receptor (glucocorticoid receptor: GR) during organ development processes, such as spermatogenesis. However, the downstream pathway induced in GC-GR signaling and the apoptotic process during spermatogenesis remains poorly understood. We reported previously that GC induces full-length glucocorticoid-induced transcript 1 (GLCCI1-long), which functions as an anti-apoptotic mediator in thymic T cell development. Here, we demonstrate that mature murine testis expresses a novel isoform of GLCCI1 protein (GLCCI1-short) in addition to GLCCI1-long. We demonstrate that GLCCI1-long is expressed in spermatocytes along with GR. In contrast, GLCCI1-short is primarily expressed in spermatids where GR is absent; instead, the estrogen receptor is expressed. GLCCI1-short also binds to LC8, which is a known mediator of the anti-apoptotic effect of GLCCI1-long. A luciferase reporter assay revealed that ß-estradiol treatment synergistically increased Glcci1-short promotor-driven luciferase activity in Erα-overexpressing cells. Together with the evidence that the conversion of testosterone to estrogen is preceded by aromatase expression in spermatids, we hypothesize that estrogen induces GLCCI1-short, which, in turn, may function as a novel anti-apoptotic mediator in mature murine testis.


Assuntos
Glucocorticoides , Sêmen , Masculino , Camundongos , Animais , Espermatogênese , Espermátides , Estrogênios
2.
Biochem Biophys Res Commun ; 614: 198-206, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35605301

RESUMO

Podocyte damage is a major pathological lesion leading to focal segmental glomerulosclerosis (FSGS). Podocytes damaged by cellular stress undergo hypertrophy to compensate for podocytopenia. It is known that cyclin-dependent kinase inhibitors induced by p53 ensure podocytes hypertrophy; however, its precise mechanism remains to be further investigated. In this study, we found that ubiquitin specific protease 40 (USP40) is a novel regulator of p53. Although USP40 knockout mice established in the present study revealed no abnormal kidney phenotype, intermediate filament Nestin was upregulated in the glomeruli, and was bound to and colocalized with USP40. We also found that USP40 deubiquitinated histidine triad nucleotide-binding protein 1 (HINT1), an inducer of p53. Gene knockdown experiments of USP40 in cultured podocytes revealed the reduction of HINT1 and p53 protein expression. Finally, in glomerular podocytes of mouse FSGS, upregulation of HINT1 occurred in advance of the proteinuria, which was followed by upregulation of USP40, p53 and Nestin. In conclusion, USP40 bound to Nestin deubiquitinates HINT1, and in consequence upregulates p53. These results provide additional insight into the pathological mechanism of podocyte hypertrophy in FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Proteínas do Tecido Nervoso , Nestina , Podócitos , Proteína Supressora de Tumor p53 , Proteases Específicas de Ubiquitina , Animais , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Hipertrofia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina/genética , Nestina/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Podócitos/fisiologia , Proteína Quinase C/antagonistas & inibidores , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação , Regulação para Cima
3.
J Immunol ; 206(11): 2544-2551, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990399

RESUMO

CD22 is an inhibitory B cell coreceptor that regulates B cell development and activation by downregulating BCR signaling through activation of SH2-containing protein tyrosine phosphatase-1 (SHP-1). CD22 recognizes α2,6 sialic acid as a specific ligand and interacts with α2,6 sialic acid-containing membrane molecules, such as CD45, IgM, and CD22, expressed on the same cell. Functional regulation of CD22 by these endogenous ligands enhances BCR ligation-induced signaling and is essential for normal B cell responses to Ags. In this study, we demonstrate that CD45 plays a crucial role in CD22-mediated inhibition of BCR ligation-induced signaling. However, disruption of ligand binding of CD22 enhances CD22 phosphorylation, a process required for CD22-mediated signal inhibition, upon BCR ligation in CD45-/- as well as wild-type mouse B cells but not in mouse B cells expressing a loss-of-function mutant of SHP-1. This result indicates that SHP-1 but not CD45 is required for ligand-mediated regulation of CD22. We further demonstrate that CD22 is a substrate of SHP-1, suggesting that SHP-1 recruited to CD22 dephosphorylates nearby CD22 as well as other substrates. CD22 dephosphorylation by SHP-1 appears to be augmented by homotypic CD22 clustering mediated by recognition of CD22 as a ligand of CD22 because CD22 clustering increases the number of nearby CD22. Our results suggest that CD22 but not CD45 is an endogenous ligand of CD22 that enhances BCR ligation-induced signaling through SHP-1-mediated dephosphorylation of CD22 in CD22 clusters.


Assuntos
Linfócitos B/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Linhagem Celular , Humanos , Antígenos Comuns de Leucócito/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
F1000Res ; 10: 542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35528957

RESUMO

Background: Andrographolide (Andro) is a diterpenoid component of the plant Andrographis paniculata that is known for its anti-tumor activity against a variety of cancer cells.   Methods: We studied the effects of Andro on the viability of the human leukemia monocytic cell line THP-1 and the human multiple myeloma cell line H929. Andro was compared with cytosine arabinoside (Ara-C) and vincristine (VCR), which are well-established therapeutics against hematopoietic tumors. The importance of reactive oxygen species (ROS) production for the toxicity of each agent was investigated by using an inhibitor of ROS production, N-acetyl-L-cysteine (NAC).    Results:  Andro reduced the viability of THP-1 and H929 in a concentration-dependent manner. H929 viability was highly susceptible to Andro, although only slightly susceptible to Ara-C. The agents Andro, Ara-C, and VCR each induced apoptosis, as shown by cellular shrinkage, DNA fragmentation, and increases in annexin V-binding, caspase-3/7 activity, ROS production, and mitochondrial membrane depolarization. Whereas Ara-C and VCR increased the percentages of cells in the G0/G1 and G2/M phases, respectively, Andro showed little or no detectable effect on cell cycle progression. The apoptotic activities of Andro were largely suppressed by NAC, an inhibitor of ROS production, whereas NAC hardly affected the apoptotic activities of Ara-C and VCR.  Conclusions: Andro induces ROS-dependent apoptosis in monocytic leukemia THP-1 and multiple myeloma H929 cells, underlining its potential as a therapeutic agent for treating hematopoietic tumors. The high toxicity for H929 cells, by a mechanism that is different from that of Ara-C and VCR, is encouraging for further studies on the use of Andro against multiple myeloma.


Assuntos
Diterpenos , Neoplasias Hematológicas , Leucemia , Mieloma Múltiplo , Andrographis paniculata , Apoptose , Linhagem Celular Tumoral , Citarabina/farmacologia , Diterpenos/farmacologia , Humanos , Mieloma Múltiplo/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS One ; 14(1): e0210193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629639

RESUMO

The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO3-3GlcAß1-3Galß1-4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the embryonic brain and the functional role it plays. Here, we showed that one of the major HNK-1 carrier proteins in the embryonic brain is tenascin-C (TNC), an extracellular matrix protein that regulates neurite outgrowth by interacting with the GPI-anchored protein contactin-1 (CNTN). Because the alternatively spliced fibronectin type-III (FNIII) repeats in TNC give rise to many isoforms and affect neuronal function, we evaluated neurite outgrowth of primary hippocampal neurons on purified recombinant FNIII repeats with or without the HNK-1 epitope as a substrate. We found that the presence of the HNK-1 epitope on the C domain of TNC promoted neurite outgrowth, and that this signal was mediated by CNTN, which is an HNK-1-expressing neuronal receptor. The neurite-promoting activity of the HNK-1 epitope on TNC required neuronal HNK-1 expression, which was defective in neurons lacking the glucuronyltransferases GlcAT-P and GlcAT-S. These results suggest that the HNK-1 epitope is a key modifier of TNC and CNTN in the regulation of embryonic brain development.


Assuntos
Antígenos CD57/imunologia , Contactina 1/fisiologia , Hipocampo/crescimento & desenvolvimento , Crescimento Neuronal/imunologia , Tenascina/imunologia , Processamento Alternativo/imunologia , Animais , Embrião de Mamíferos , Epitopos/imunologia , Domínio de Fibronectina Tipo III/genética , Domínio de Fibronectina Tipo III/imunologia , Glucuronosiltransferase/genética , Células HEK293 , Hipocampo/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/fisiologia , Crescimento Neuronal/genética , Cultura Primária de Células , Tenascina/genética
6.
FEBS Lett ; 591(22): 3721-3729, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29029364

RESUMO

Glucose uptake is crucial for providing both an energy source and a signal that regulates cell proliferation. Therefore, it is important to clarify the mechanisms underlying glucose uptake and its transmission to intracellular signaling pathways. In this study, we searched for a novel regulatory factor involved in glucose-induced signaling by using Saccharomyces cerevisiae as a eukaryotic model. Requirement of the extracellular protein Ecm33 in efficient glucose uptake and full activation of the nutrient-responsive TOR kinase complex 1 (TORC1) signaling pathway is shown. Cells lacking Ecm33 elicit a series of starvation-induced pathways even in the presence of extracellular high glucose concentration. This results in delayed cell proliferation, reduced ATP, induction of autophagy, and dephosphorylation of the TORC1 substrates Atg13 and Sch9.


Assuntos
Glucose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proliferação de Células , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
7.
Biochim Biophys Acta Gen Subj ; 1861(10): 2455-2461, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28709864

RESUMO

BACKGROUND: The human natural killer-1 (HNK-1) carbohydrate, a unique trisaccharide possessing sulfated glucuronic acid in a non-reducing terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-), is highly expressed in the nervous system and its spatiotemporal expression is strictly regulated. Mice deficient in the gene encoding a key enzyme, GlcAT-P, of the HNK-1 biosynthetic pathway exhibit almost complete disappearance of the HNK-1 epitope in the brain, significant reduction of long-term potentiation, and aberration of spatial learning and memory formation. In addition to its physiological roles in higher brain function, the HNK-1 carbohydrate has attracted considerable attention as an autoantigen associated with peripheral demyelinative neuropathy, which relates to IgM paraproteinemia, because of high immunogenicity. It has been suggested, however, that serum autoantibodies in IgM anti-myelin-associated glycoprotein (MAG) antibody-associated neuropathy patients show heterogeneous reactivity to the HNK-1 epitope. SCOPE OF REVIEW: We have found that structurally distinct HNK-1 epitopes are expressed in specific proteins in the nervous system. Here, we overview the current knowledge of the involvement of these HNK-1 epitopes in the regulation of neural plasticity and discuss the impact of different HNK-1 antigens of anti-MAG neuropathy patients. MAJOR CONCLUSIONS: We identified the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluA2 and aggrecan as HNK-1 carrier proteins. The HNK-1 epitope on GluA2 and aggrecan regulates neural plasticity in different ways. Furthermore, we found the clinical relationship between reactivity of autoantibodies to the different HNK-1 epitopes and progression of anti-MAG neuropathy. GENERAL SIGNIFICANCE: The HNK-1 epitope is indispensable for the acquisition of normal neuronal function and can be a good target for the establishment of diagnostic criteria for anti-MAG neuropathy.


Assuntos
Antígenos CD57/química , Epitopos/química , Glicoproteína Associada a Mielina/imunologia , Plasticidade Neuronal , Paraproteinemias/imunologia , Doenças do Sistema Nervoso Periférico/imunologia , Agrecanas/metabolismo , Animais , Autoanticorpos/biossíntese , Antígenos CD57/genética , Antígenos CD57/imunologia , Epitopos/genética , Epitopos/imunologia , Glucuronosiltransferase/deficiência , Glucuronosiltransferase/genética , Humanos , Imunoglobulina M/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Knockout , Glicoproteína Associada a Mielina/genética , Paraproteinemias/genética , Paraproteinemias/patologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Receptores de AMPA/genética , Receptores de AMPA/imunologia
8.
Mol Biol Cell ; 27(13): 2037-50, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27170180

RESUMO

Endomitosis is a special type of mitosis in which only cytokinesis-the final step of the cell division cycle-is defective, resulting in polyploid cells. Although endomitosis is biologically important, its regulatory aspects remain elusive. Psychosine, a lysogalactosylceramide, prevents proper cytokinesis when supplemented to proliferating cells. Cytokinetic inhibition by psychosine does not inhibit genome duplication. Consequently cells undergo multiple rounds of endomitotic cell cycles, resulting in the formation of giant multiploid cells. Here we successfully quantified psychosine-triggered multiploid cell formation, showing that membrane sphingolipids ratios modulate psychosine-triggered polyploidy in Namalwa cells. Among enzymes that experimentally remodel cellular sphingolipids, overexpression of glucosylceramide synthase to biosynthesize glycosylsphingolipids (GSLs) and neutral sphingomyelinase 2 to hydrolyze sphingomyelin (SM) additively enhanced psychosine-triggered multiploidy; almost all of the cells became polyploid. In the presence of psychosine, Namalwa cells showed attenuated cell surface SM clustering and suppression of phosphatidylinositol 4,5-bisphosphate production at the cleavage furrow, both important processes for cytokinesis. Depending on the sphingolipid balance between GSLs and SM, Namalwa cells could be effectively converted to viable multiploid cells with psychosine.


Assuntos
Fosfatidilinositóis/metabolismo , Psicosina/metabolismo , Animais , Ciclo Celular/fisiologia , Membrana Celular/metabolismo , Fase de Clivagem do Zigoto , Citocinese/fisiologia , Glucosiltransferases , Humanos , Membranas , Mitose/efeitos dos fármacos , Mitose/fisiologia , Poliploidia , Psicosina/farmacologia , Esfingolipídeos/metabolismo
9.
Biochim Biophys Acta ; 1860(6): 1192-201, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947009

RESUMO

BACKGROUND: Cells have evolved the mechanisms to survive nutritional shortages in the environment. In Saccharomyces cerevisiae, α-mannosidase Ams1 is known to play a role in catabolism of N-linked free oligosaccharides in the cytosol. Although, this enzyme is also known to be transported selectively from the cytosol to the vacuoles by autophagy, the physiological significance of this transport has not been clarified. METHODS: To elucidate the regulatory mechanism of the activity of Ams1, we assessed the enzymatic activity of the cell free extract of the wild-type and various gene disruptants under different nutritional conditions. In addition, the regulation of Ams1 at both transcription and post-translation was examined. RESULTS: The activity of Ams1 was significantly increased upon the depletion of glucose in the medium. Interestingly, the activity of the enzyme was also stimulated by nitrogen starvation. Our data showed that the activity of Ams1 is regulated by the stress responsive transcriptional factors Msn2/4 through the protein kinase A and the target of rapamycin complex 1 pathways. In addition, Ams1 is post-translationally activated by Pep4-dependent processing in the vacuoles. CONCLUSION: Yeast cells monitor extracellular nutrients to regulate mannoside catabolism via the cellular signaling pathway. GENERAL SIGNIFICANCE: This study revealed that intracellular Ams1 activity is exquisitely upregulated in response to nutrient starvation by induced expression as well as by Pep4-dependent enhanced activity in the vacuoles. The signaling molecules responsible for regulation of Ams1 were also clarified.


Assuntos
Saccharomyces cerevisiae/enzimologia , Transdução de Sinais/fisiologia , alfa-Manosidase/metabolismo , Ácido Aspártico Endopeptidases/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/fisiologia , Nitrogênio/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Regulação para Cima
10.
Methods Mol Biol ; 1200: 379-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25117252

RESUMO

Remodeling of glycans on the cell surface is an essential technique to analyze cellular function of lectin-glycan ligand interaction. Here we describe the methods to identify the responsible enzyme (glycosyltransferase) regulating the expression of the glycan of interest and to modulate the glycan expression by overexpressing the glycosyltransferase gene. For the identification of the responsible enzyme, we introduce a new method, CIRES (correlation index-based responsible-enzyme gene screening), that consists of statistical comparison of glycan expression profile obtained by flow cytometry and gene expression profile obtained by DNA microarray.


Assuntos
Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo , Adesão Celular , Expressão Gênica , Vetores Genéticos/genética , Humanos , Lipídeos/química , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/genética , Retroviridae/genética , Transfecção
11.
Glycobiology ; 24(3): 314-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352591

RESUMO

The human natural killer-1 (HNK-1) carbohydrate comprising a sulfated trisaccharide (HSO3-3GlcAß1-3Galß1-4GlcNAc-) is expressed on N-linked and O-mannose-linked glycans in the nervous system and involved in learning and memory functions. Although whole/core glycan structures and carrier glycoproteins for the N-linked HNK-1 epitope have been studied, carrier glycoproteins and the biosynthetic pathway of the O-mannose-linked HNK-1 epitope have not been fully characterized. Here, using mass spectrometric analyses, we identified the major carrier glycoprotein of the O-linked HNK-1 as phosphacan in developing mouse brains and determined the major O-glycan structures having the terminal HNK-1 epitope from partially purified phosphacan. The O-linked HNK-1 epitope on phosphacan almost disappeared due to the knockout of protein O-mannose ß1,2-N-acetylglucosaminyltransferase 1, an N-acetylglucosaminyltransferase essential for O-mannose-linked glycan synthesis, indicating that the reducing terminal of the O-linked HNK-1 is mannose. We also showed that glucuronyltransferase-P (GlcAT-P) was involved in the biosynthesis of O-mannose-linked HNK-1 using the gene-deficient mice of GlcAT-P, one of the glucuronyltransferases for HNK-1 synthesis. Consistent with this result, we revealed that GlcAT-P specifically synthesized O-linked HNK-1 onto phosphacan using cultured cells. Furthermore, we characterized the as-yet-unknown epitope of the 6B4 monoclonal antibody (mAb), which was thought to recognize a unique phosphacan glycoform. The reactivity of the 6B4 mAb almost completely disappeared in GlcAT-P-deficient mice, and exogenously expressed phosphacan was selectively recognized by the 6B4 mAb when co-expressed with GlcAT-P, suggesting that the 6B4 mAb preferentially recognizes O-mannose-linked HNK-1 on phosphacan. This is the first study to show that 6B4 mAb-reactive O-mannose-linked HNK-1 in the brain is mainly carried by phosphacan.


Assuntos
Encéfalo/metabolismo , Antígenos CD57/metabolismo , Manose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Antígenos CD57/química , Células COS , Configuração de Carboidratos , Chlorocebus aethiops , Glucuronosiltransferase/metabolismo , Glicosilação , Células HEK293 , Humanos , Manose/química , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/química
12.
Eur J Immunol ; 42(1): 241-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21956693

RESUMO

CD22 (Siglec-2) is a B-cell membrane-bound lectin that recognizes glycan ligands containing α2,6-linked sialic acid (α2,6Sia) and negatively regulates signaling through the B-cell Ag receptor (BCR). Although CD22 has been investigated extensively, its precise function remains unclear due to acting multiple phases. Here, we demonstrate that CD22 is efficiently activated in trans by complexes of Ag and soluble IgM (sIgM) due to the presence of glycan ligands on sIgM. This result strongly suggests sIgM as a natural trans ligand for CD22. Also, CD22 appears to serve as a receptor for sIgM, which induces a negative feedback loop for B-cell activation similar to the Fc receptor for IgG (FcγRIIB).


Assuntos
Linfócitos B/imunologia , Imunoglobulina M/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Linfócitos B/metabolismo , Western Blotting , Linhagem Celular Tumoral , Retroalimentação , Citometria de Fluxo , Imunoglobulina M/metabolismo , Ligantes , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
13.
J Biol Chem ; 286(31): 27214-24, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21665948

RESUMO

Cellular biosynthesis of macromolecules often involves highly branched enzyme pathways, thus cellular regulation of such pathways could be rather difficult. To understand the regulatory mechanism, a systematic approach could be useful. We genetically analyzed a branched biosynthetic pathway for glycosphingolipid (GSL) GM1 using correlation index-based responsible enzyme gene screening (CIRES), a novel quantitative phenotype-genotype correlation analysis. CIRES utilizes transcriptomic profiles obtained from multiple cells. Among a panel of B cell lines, expression of GM1 was negatively correlated with and suppressed by gene expression of CD77 synthase (CD77Syn), whereas no significant positive correlation was found for enzymes actually biosynthesizing GM1. Unexpectedly, a GM1-suppressive phenotype was also observed in the expression of catalytically inactive CD77Syn, ruling out catalytic consumption of lactosylceramide (LacCer) as the main cause for such negative regulation. Rather, CD77Syn seemed to limit other branching reaction(s) by targeting LacCer synthase (LacCerSyn), a proximal enzyme in the pathway, because they were closely localized in the Golgi apparatus and formed a complex. Moreover, turnover of LacCerSyn was accelerated upon CD77Syn expression to globally change the GSL species expressed. Collectively, these data suggest that transcriptomic assessment of macromolecule biosynthetic pathways can disclose a global regulatory mechanism(s) even when unexpected.


Assuntos
Perfilação da Expressão Gênica , Glicoesfingolipídeos/biossíntese , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Compartimento Celular , Linhagem Celular , Citometria de Fluxo , Imunofluorescência , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Retroviridae/genética , Frações Subcelulares/enzimologia
14.
Mol Syst Biol ; 7: 472, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21364574

RESUMO

The discovery of novel bioactive molecules advances our systems-level understanding of biological processes and is crucial for innovation in drug development. For this purpose, the emerging field of chemical genomics is currently focused on accumulating large assay data sets describing compound-protein interactions (CPIs). Although new target proteins for known drugs have recently been identified through mining of CPI databases, using these resources to identify novel ligands remains unexplored. Herein, we demonstrate that machine learning of multiple CPIs can not only assess drug polypharmacology but can also efficiently identify novel bioactive scaffold-hopping compounds. Through a machine-learning technique that uses multiple CPIs, we have successfully identified novel lead compounds for two pharmaceutically important protein families, G-protein-coupled receptors and protein kinases. These novel compounds were not identified by existing computational ligand-screening methods in comparative studies. The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Genômica/métodos , Proteínas Quinases/análise , Receptores Acoplados a Proteínas G/análise , Inteligência Artificial , Sítios de Ligação , Bases de Dados Factuais , Formas de Dosagem , Humanos , Ligantes , Proteínas Quinases/química , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/química , Biologia de Sistemas
15.
Arch Biochem Biophys ; 506(1): 83-91, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21081108

RESUMO

Sphingolipids act as signaling mediators that regulate a diverse range of cellular events. Although numerous sphingolipid functions have been studied, little is known about the effect of sphingolipids on monocyte differentiation into macrophages. Here, we report that two lysosphingolipids, sphingosylphosphorylcholine (SPC) and lysosulfatide (LSF), inversely affect macrophagic differentiation of monocytic cell lines, U937 and THP-1. Molecular analyses revealed that SPC enhances, whereas LSF suppresses, phorbol ester-induced classical (M1-polarized) differentiation to macrophages. The expression of CD11b, a macrophage marker, was induced in accordance with the activation status of the Raf/MEK/ERK signaling pathway in which SPC and LSF had opposite effects. Pharmacological inhibition of this pathway aborted the differentiation, indicating that this signaling pathway is required. Consistently, SPC promoted, while LSF inhibited, monocyte adhesion to fibronectin, through the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The effects of SPC on Raf/MEK/ERK and PI3K/Akt signaling were dependent on G(i/o), whereas the SPC-induced calcium influx was dependent on G(q). Thus SPC utilizes G-protein coupled receptor. In contrast, the effects of LSF were independent of G(i/o) and G(q). These results suggest that SPC enhances, whereas LSF suppresses, monocyte differentiation into macrophages through regulating the Raf/MEK/ERK and PI3K/Akt signaling pathways via distinct mechanisms.


Assuntos
Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Psicosina/análogos & derivados , Esfingosina/análogos & derivados , Sequência de Bases , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Primers do DNA/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilcolina/metabolismo , Fosforilcolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psicosina/metabolismo , Psicosina/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo , Esfingosina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Células U937 , Quinases raf/metabolismo
18.
J Exp Med ; 206(1): 125-38, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19103880

RESUMO

We show that the enzymatic acetylation and deacetylation of a cell surface carbohydrate controls B cell development, signaling, and immunological tolerance. Mice with a mutation in sialate:O-acetyl esterase, an enzyme that specifically removes acetyl moieties from the 9-OH position of alpha2-6-linked sialic acid, exhibit enhanced B cell receptor (BCR) activation, defects in peripheral B cell development, and spontaneously develop antichromatin autoantibodies and glomerular immune complex deposits. The 9-O-acetylation state of sialic acid regulates the function of CD22, a Siglec that functions in vivo as an inhibitor of BCR signaling. These results describe a novel catalytic regulator of B cell signaling and underscore the crucial role of inhibitory signaling in the maintenance of immunological tolerance in the B lineage.


Assuntos
Linfócitos B/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Diferenciação Celular/fisiologia , Receptores de Antígenos de Linfócitos B/fisiologia , Transdução de Sinais/fisiologia , Acetilação , Acetilesterase , Animais , Anticorpos Antinucleares/sangue , Subpopulações de Linfócitos B/citologia , Linfócitos B/citologia , Linfócitos B/fisiologia , Western Blotting , Células da Medula Óssea/citologia , Hidrolases de Éster Carboxílico/genética , Contagem de Células , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Modelos Biológicos , Mutação , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismo , Baço/citologia
19.
FEBS Lett ; 582(10): 1444-50, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18381075

RESUMO

To understand physiological roles of tissue mast cells, we established a culture system where bone marrow-derived immature mast cells differentiate into the connective tissue-type mast cell (CTMC)-like cells through modifying the previous co-culture system with Swiss 3T3 fibroblasts. Our system was found to reproducibly mimic the differentiation of CTMCs on the basis of several criteria, such as granule maturation and sensitivity to cationic secretagogues. The gene expression profile obtained by the microarray analyses was found to reflect many aspects of the differentiation. Our system is thus helpful to gain deeper insights into terminal differentiation of CTMCs.


Assuntos
Diferenciação Celular , Mastócitos/citologia , Mastócitos/fisiologia , Modelos Biológicos , Animais , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Diferenciação Celular/genética , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Histamina/análise , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Hidrolases/metabolismo , Peritônio/citologia , Células Swiss 3T3
20.
J Biol Chem ; 282(44): 32200-7, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17728258

RESUMO

CD22/Siglec-2, an important inhibitory co-receptor on B-lymphocytes, is known to recognize alpha2-6-sialylated glycan as a specific ligand. Here we propose that the alpha2-6-sialylated and 6-GlcNAc-sulfated determinant serves as a preferred ligand for CD22 because the binding of a human B-cell line to CD22 was almost completely abrogated after incubating the cells with NaClO3, an inhibitor of cellular sulfate metabolism, and was also significantly inhibited by a newly generated monoclonal antibody specific to the alpha2-6-sialylated 6-sulfo-N-acetyllactosamine (LacNAc) determinant (KN343, murine IgM). The alpha2-6-sialylated 6-sulfo-LacNAc determinant defined by the antibody was significantly expressed on a majority of normal human peripheral B-lymphocytes as well as follicular B-lymphocytes in peripheral lymph nodes. The determinant was also expressed in endothelial cells of high endothelial venules of secondary lymphoid tissues, including lymph nodes, tonsils, and intestine-associated lymphoid tissues, more strongly than on B-lymphocytes, suggesting a role for CD22 in B-cell interaction with blood vessels and trafficking. These results indicate that the alpha2-6-sialylated 6-sulfo-LacNAc determinant serves as an endogenous ligand for human CD22 and suggest the possibility that 6-GlcNAc sulfation as well as alpha2-6-sialylation may regulate CD22/Siglec-2 functions in humans.


Assuntos
Amino Açúcares/metabolismo , Linfócitos B/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Anticorpos Monoclonais , Linfócitos B/citologia , Adesão Celular , Linhagem Celular Tumoral , Humanos , Ligantes , Tecido Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA