Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790256

RESUMO

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Assuntos
Cabelo , Óleos , Animais , Feminino , Camundongos , Biologia Computacional/métodos , Proteínas Filagrinas , Perfilação da Expressão Gênica/métodos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Minoxidil/administração & dosagem , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos , Baleias , Óleos/administração & dosagem
2.
Nutr Res ; 118: 128-136, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660501

RESUMO

Many studies have investigated the beneficial effects of n-3 polyunsaturated fatty acids, such as their potential for lowering lipid levels and reducing diabetes risk. However, few studies have specifically examined docosapentaenoic acid (DPA), an n-3 polyunsaturated fatty acid with limited availability in its pure form. We hypothesized that DPA would have lipid-lowering effects and improve insulin resistance in KK/Ta mice. To test our hypothesis, 7-week-old KK/Ta mice were fed a high-fat diet for 12 weeks to induce obesity before being divided into 3 groups and fed an experimental diet for 10 weeks. The experimental diets were: LSO, using lard and safflower oil as fat sources; SO, in which lard in the LSO diet was replaced with safflower oil; and DPA, in which lard in the LSO diet was replaced with DPA oil. After 10 weeks, plasma triglyceride and total cholesterol concentrations were significantly decreased in the DPA group, but not in the SO group. Sterol regulatory element-binding protein-1 and stearoyl-CoA desaturase-1 gene expressions involved in fatty acid synthesis in the liver were significantly lower in the DPA group compared with the LSO group. Plasma glucose concentrations were significantly decreased in both the SO group and the DPA group compared with the LSO group, whereas plasma insulin concentrations were significantly decreased in the DPA group alone. These results indicate that DPA has plasma lipid-lowering and hypoglycemic effects, possibly from suppression of fatty acid synthesis in the liver.


Assuntos
Diabetes Mellitus , Ácidos Graxos Ômega-3 , Animais , Camundongos , Glicemia/metabolismo , Óleo de Cártamo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Diabetes Mellitus/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos
3.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902003

RESUMO

Sweat plays a critical role in human body, including thermoregulation and the maintenance of the skin environment and health. Hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion, resulting in severe skin conditions (pruritus and erythema). Bioactive peptide and pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and identified to activate adenylate cyclase in pituitary cells. Recently, it was reported that PACAP increases sweat secretion via PAC1R in mice and promotes the translocation of AQP5 to the cell membrane through increasing intracellular [Ca2+] via PAC1R in NCL-SG3 cells. However, intracellular signaling mechanisms by PACAP are poorly clarified. Here, we used PAC1R knockout (KO) mice and wild-type (WT) mice to observe changes in AQP5 localization and gene expression in sweat glands by PACAP treatment. Immunohistochemistry revealed that PACAP promoted the translocation of AQP5 to the lumen side in the eccrine gland via PAC1R. Furthermore, PACAP up-regulated the expression of genes (Ptgs2, Kcnn2, Cacna1s) involved in sweat secretion in WT mice. Moreover, PACAP treatment was found to down-regulate the Chrna1 gene expression in PAC1R KO mice. These genes were found to be involved in multiple pathways related to sweating. Our data provide a solid basis for future research initiatives in order to develop new therapies to treat sweating disorders.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Suor , Camundongos , Humanos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Suor/metabolismo , Sudorese , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hipófise/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835581

RESUMO

The study aimed to understand mechanism/s of neuronal outgrowth in the rat adrenal-derived pheochromocytoma cell line (PC12) under pituitary adenylate cyclase-activating polypeptide (PACAP) treatment. Neurite projection elongation was suggested to be mediated via Pac1 receptor-mediated dephosphorylation of CRMP2, where GSK-3ß, CDK5, and Rho/ROCK dephosphorylated CRMP2 within 3 h after addition of PACAP, but the dephosphorylation of CRMP2 by PACAP remained unclear. Thus, we attempted to identify the early factors in PACAP-induced neurite projection elongation via omics-based transcriptomic (whole genome DNA microarray) and proteomic (TMT-labeled liquid chromatography-tandem mass spectrometry) analyses of gene and protein expression profiles from 5-120 min after PACAP addition. The results revealed a number of key regulators involved in neurite outgrowth, including known ones, called 'Initial Early Factors', e.g., genes Inhba, Fst, Nr4a1,2,3, FAT4, Axin2, and proteins Mis12, Cdk13, Bcl91, CDC42, including categories of 'serotonergic synapse, neuropeptide and neurogenesis, and axon guidance'. cAMP signaling and PI3K-Akt signaling pathways and a calcium signaling pathway might be involved in CRMP2 dephosphorylation. Cross-referencing previous research, we tried to map these molecular components onto potential pathways, and we may provide important new information on molecular mechanisms of neuronal differentiation induced by PACAP. Gene and protein expression data are publicly available at NCBI GSE223333 and ProteomeXchange, identifier PXD039992.


Assuntos
Fosfatidilinositol 3-Quinases , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células PC12 , Glicogênio Sintase Quinase 3 beta/genética , Fosfatidilinositol 3-Quinases/genética , Proteômica , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Crescimento Neuronal
5.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054857

RESUMO

Dry eye disease (DED) is caused by a reduction in the volume or quality of tears. The prevalence of DED is estimated to be 100 million in the developed world. As aging is a risk factor for DED, the prevalence of DED is expected to grow at a rapid pace in aging populations, thus creating an increased need for new therapies. This review summarizes DED medications currently in clinical use. Most current medications for DED focus on stimulating tear secretion, mucin secretion, or suppressing inflammation, rather than simply replenishing the ocular surface with moisture to improve symptoms. We recently reported that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) induces tear secretion and suppresses corneal injury caused by a reduction in tears. Moreover, it has been reported that a PACAP in water and a 0.9% saline solution at +4 °C showed high stability and achieved 80-90% effectiveness after 2 weeks of treatment. These results reveal PACAP as a candidate DED medication. Further research on the clinical applications of PACAP in DED is necessary.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Animais , Síndromes do Olho Seco/patologia , Humanos , Modelos Biológicos , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Lágrimas/efeitos dos fármacos
6.
Peptides ; 146: 170647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562532

RESUMO

The process of sweating plays an important role in the human body, including thermoregulation and maintenance of the environment and health of the skin. It is known that the conditions of hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion and can result in severe skin conditions such as pruritus and erythema, which significantly reduce the patient's quality of life. However, there are many aspects of the signaling mechanisms in the process of sweating that have not been clarified, and no effective therapies or therapeutic agents have yet been discovered. Previously, it was reported that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes sweating, but details of the underlying mechanism has not been clarified. We used immortalized human eccrine gland cells (NCL-SG3 cell) to investigate how sweat secretion is induced by PACAP. Intracellular Ca2+ levels were increased in these cells following their exposure to physiological concentrations of PACAP. Intracellular Ca2+ was not elevated when cells were concomitantly treated with PA-8, a specific PAC1-R antagonist, suggesting that PAC1-R is involved in the elevation of intracellular Ca2+ levels in response to PACAP treatment. Furthermore, immunocytochemistry experiments showed that aquaporin-5 was translocated from the cytoplasm to the cell membrane by PACAP. These results suggest that PACAP acts on eccrine sweat glands to promote sweat secretion by translocation of aquaporin-5 to the cell membrane in response to increased levels of intracellular Ca2+. These findings also provide a solid basis for future research initiatives to develop new therapies to treat sweating disorders.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Glândulas Sudoríparas/efeitos dos fármacos , Aquaporina 5/metabolismo , Cálcio/metabolismo , Linhagem Celular Transformada , Humanos , Transporte Proteico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Glândulas Sudoríparas/citologia , Glândulas Sudoríparas/metabolismo
7.
Neural Plast ; 2021: 2522454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422037

RESUMO

The present research investigates the molecular mechanism of neurite outgrowth (protrusion elongation) under pituitary adenylate cyclase-activating polypeptide (PACAP) 38 treatments using a rat adrenal-derived pheochromocytoma cell line-PC12. This study specifically looks into the regulation of PACAP38-induced collapsing response mediator protein 2 (CRMP2) previously identified in a mouse brain ischemia model and which could be recovered by PACAP38 treatment. Previously, DNA microarray analysis revealed that PACAP 38-mediated neuroprotection involved not only CRMP2 but also pathways related to glycogen synthase kinase-3ß (GSK-3ß) and other signaling components. Thus, to clarify whether CRMP2 acts directly on PACAP38 or through GSK-3ß as part of the mechanism of PACAP38-induced neurite outgrowth, we observed neurite outgrowth in the presence of GSK-3ß inhibitors and activators. PC12 cells were treated with PACAP38 being added to the cell culture medium at concentrations of 10-7 M, 10-8 M, and 10-9 M. Post PACAP38 treatment, immunostaining was used to confirm protrusion elongation of the PC12 cells, while RT-PCR, two-dimensional gel electrophoresis in conjunction with Western blotting, and inhibition experiments were performed to confirm the expression of the PACAP gene, its receptors, and downstream signaling components. Our data show that neurite protrusion elongation by PACAP38 (10-7 M) in PC12 cells is mediated through the PAC1-R receptor as demonstrated by its suppression by a specific inhibitor PA-8. Inhibitor experiments suggested that PACAP38-triggered neurite protrusion follows a GSK-3ß-regulated pathway, where the AKT and cAMP/ERK pathways are involved and where the inhibition of Rho/Roc could enhance neurite protrusion under PACAP38 stimulation. Although we could not yet confirm the exact role and position of CRMP2 in PACAP38-mediated PC12 cell elongation, it appears that its phosphorylation and dephosphorylation have a correlation with the neurite protrusion elongation through the interplay of CDK5, which needs to be investigated further.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos
8.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L786-L793, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877227

RESUMO

Bronchomotor tone is regulated by contraction and relaxation of airway smooth muscle (ASM). A weakened ASM relaxation might be a cause of airway hyperresponsiveness (AHR), a characteristic feature of bronchial asthma. Pituitary adenylyl cyclase-activating polypeptide (PACAP) is known as a mediator that causes ASM relaxation. To date, whether or not the PACAP responsiveness is changed in asthmatic ASM is unknown. The current study examined the hypothesis that relaxation induced by PACAP is reduced in bronchial smooth muscle (BSM) of allergic asthma. The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. Tension study showed a BSM hyperresponsiveness to acetylcholine in the OA-challenged mice. Both quantitative RT-PCR and immunoblot analyses revealed a significant decrease in PAC1 receptor expression in BSMs of the diseased mice. Accordingly, in the antigen-challenged group, the PACAP-induced PAC1 receptor-mediated BSM relaxation was significantly attenuated, whereas the relaxation induced by vasoactive intestinal polypeptide was not changed. These findings suggest that the relaxation induced by PACAP is impaired in BSMs of experimental asthma due to a downregulation of its binding partner PAC1 receptor. Impaired BSM responsiveness to PACAP might contribute to the AHR in asthma.


Assuntos
Asma/metabolismo , Brônquios/metabolismo , Músculo Liso/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Tensoativos/metabolismo , Animais , Hiper-Reatividade Brônquica/metabolismo , Camundongos , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Hipersensibilidade Respiratória/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
9.
Plant Signal Behav ; 14(10): e1644594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31342859

RESUMO

The present research examines the possibility of finding bio-molecular compounds from the double cherry blossom (termed as 'Gosen-Sakura' of Gosen-city, Niigata-prefecture, Japan) leaves, which have been long used in the preparation of the traditional Japanese sweet (wagashi) - 'sakura-mochi'. Based on its indicated anti-microbial properties historically, our study provides a new low temperature vacuum extraction method for extracting 'near natural form of water soluble leaf (cell) extracts from the Gosen-Sakura, and demonstrates the presence of some 'novel' compound(s) with anti-tumor cell lines proliferation inhibitory affects through the MTT assay. To our knowledge, no reports exist on the sakura tree 'leaf (cell) extracts' inhibiting tumor cell line growth. We further examined and compared the effects of known compounds with anti-tumor activity, coumarin and benzyl alcohol with Gosen-Sakura leaf extract; results lead us to hypothesize that the Gosen-Sakura leaf extract contains substance(s) other than the above two known compounds, with antitumor effect. Additionally, we speculate on the underlying mechanism of action of the Gosen-Sakura leaf extract by targeting cell division at the point of DNA synthesis and causing apoptosis. In conclusion, we present scientific evidence on the presence of certain 'novel' biomolecule(s), with anti-tumor activity, in the Gosen-Sakura leaf which has been long used in Japanese sweet - the 'sakura-mochi'.


Assuntos
Temperatura Baixa , Flores/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Prunus/química , Vácuo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia
10.
J Mol Neurosci ; 68(3): 420-426, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29931503

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family of peptides. PACAP and its three receptor subtypes are expressed in neural tissues and in the eye, including the retina, cornea, and lacrimal gland. PACAP is known to exert pleiotropic effects on the central nervous system and in eye tissues where it plays important roles in protecting against dry eye. This review provides an overview of current knowledge regarding dry eye symptoms in aged animals and humans and the protective effects, mechanisms of action. In addition, we also refer to the development of a new preventive/therapeutic method by PACAP of dry eye patients.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Animais , Síndromes do Olho Seco/etiologia , Humanos
11.
Anat Sci Int ; 91(4): 313-24, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27324639

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues of the eye, including the retina, cornea and lacrimal gland, and PACAP is known to exert pleiotropic effects throughout the central nervous system. This review provides an overview of current knowledge regarding the cell protective effects, mechanisms of action and therapeutic potential of PACAP in response to several types of eye injury.


Assuntos
Fármacos Neuroprotetores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Animais , Córnea/metabolismo , Oftalmopatias/tratamento farmacológico , Humanos , Aparelho Lacrimal/metabolismo , Camundongos , Tecido Nervoso/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Retina/metabolismo
12.
J Mol Neurosci ; 50(3): 443-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23354880

RESUMO

Administration of galanin-like peptide (GALP) leads to a decrease in both total food intake and body weight 24 h after injection, compared to controls. Moreover, GALP induces an increase in core body temperature. To elucidate the mechanism by which GALP exerts its effect on energy homeostasis, urethane-anesthetized rats were intracerebroventricularly injected with GALP or saline, after which oxygen consumption, heart rate, and body temperature were monitored for 4 h. In some cases, animals were also pretreated with the cyclooxygenase (COX) inhibitor, diclofenac, via intracerebroventricular (i.c.v.) or intravenous (i.v.) injection. c-Fos expression in the brain was also examined after injection of GALP, and the levels of COX and prostaglandin E(2) synthetase (PGES) mRNA in primary cultured astrocytes treated with GALP were analyzed by using qPCR. The i.c.v. injection of GALP caused biphasic thermogenesis, an effect which could be blocked by pretreatment with centrally (i.c.v.), but not peripherally (i.v.) administered diclofenac. c-Fos immunoreactivity was observed in astrocytes in the periventricular zone of the third ventricle. GALP treatment also increased COX-2 and cytosolic PGES, but not COX-1, microsomal PGES-1, or microsomal PGES-2 mRNA levels in cultured astrocytes. We, therefore, suggest that GALP elicits thermogenesis via a prostaglandin E(2)-mediated pathway in astrocytes of the central nervous system.


Assuntos
Astrócitos/metabolismo , Dinoprostona/biossíntese , Peptídeo Semelhante a Galanina/farmacologia , Termogênese/efeitos dos fármacos , Terceiro Ventrículo/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Temperatura Corporal , Células Cultivadas , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2 , Citosol/metabolismo , Diclofenaco/farmacologia , Frequência Cardíaca , Homeostase , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Consumo de Oxigênio , Prostaglandina-E Sintases , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Terceiro Ventrículo/citologia , Terceiro Ventrículo/efeitos dos fármacos , Transcrição Gênica
13.
Regul Pept ; 145(1-3): 165-8, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17916390

RESUMO

Galanin-like peptide (GALP) is a 60-amino acid neuropeptide that plays an important role in the neuronal regulation of feeding, energy balance and reproduction. GALP is produced in the hypothalamic arcuate nucleus, an area containing, amongst other neuron types, two populations of neurons in which we were interested: a population of GALP-containing neurons which regulate energy balance and reproduction, and a second population consisting of tuberoinfundibular dopaminergic neurons which suppress prolactin secretion from the adenohypophysis. To characterize morphologically the relationship between GALP and dopamine-containing neurons in the arcuate nucleus, a double immunofluorescence study was performed on cryosections from rat brain. Immunohistochemical double labeling studies revealed that GALP-immunoreactive nerve fibers made direct contact on tyrosine hydroxylase (TH)-containing neuronal cell bodies in the arcuate nucleus. These results suggest that GALP-containing neurons innervate tuberoinfundibular dopaminergic neurons.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Forma Celular , Dopamina/metabolismo , Peptídeo Semelhante a Galanina/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
14.
Ann N Y Acad Sci ; 1070: 550-60, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16888224

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide that belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP) family. PACAP prevents ischemic delayed neuronal cell death (apoptosis) in the hippocampus. PACAP inhibits the activity of the mitogen-activated protein kinase (MAPK) family, especially JNK/SAPK and p38, thereby protecting against apoptotic cell death. After the ischemia-reperfusion, both pyramidal cells and astrocytes increased their expression of the PACAP receptor (PAC1-R). Reactive astrocytes increased their expression of PAC1-R, released interleukin-6 (IL-6) that is a proinflammatory cytokine with both differentiation and growth-promoting effects for a variety of target cell types, and thereby protected neurons from apoptosis. These results suggest that PACAP itself and PACAP-stimulated secretion of IL-6 synergistically inhibit apoptotic cell death in the hippocampus. The PAC1-R is expressed in the neuroepithelial cells from early developmental stages and in various brain regions during development. We have recently found that PACAP, at physiological concentrations, induces differentiation of mouse neural stem cells into astrocytes. Neural stem cells were prepared from the telencephalon of mouse embryos and cultured with basic fibroblast growth factor. The PAC1-R immunoreactivity was demonstrated in the neural stem cells. When neural stem cells were exposed to PACAP, about half of these cells showed glial fibrillary acidic protein (GFAP) immunoreactivity. This phenomenon was significantly antagonized by a PAC1-R antagonist (PACAP6-38), indicating that PACAP induces differentiation of neural stem cell into astrocytes. Other our physiological studies have demonstrated that PACAP acts on PAC1-R in mouse neural stem cells and its signal is transmitted to the PAC1-R-coupled G protein Gq but not to Gs. These findings strongly suggest that PACAP plays very important roles in neuroprotection in adult brain as well as astrocyte differentiation during development.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/crescimento & desenvolvimento , Fármacos Neuroprotetores/farmacologia , Neurotransmissores/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Apoptose/efeitos dos fármacos , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos
15.
Peptides ; 27(11): 2885-93, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16793173

RESUMO

Galanin-like peptide (GALP), commonly known as an appetite-regulating peptide, has been shown to increase plasma luteinizing hormone (LH) through luteinizing hormone-releasing hormone (LHRH). This led us to investigate, using both light and electron microscopy, whether GALP-containing neurons in the rat brain make direct inputs to LHRH-containing neurons. As LHRH-containing neurons are very difficult to demonstrate immunohistochemically with LHRH antiserum without colchicine treatment, we used a transgenic rat in which LHRH tagged with enhanced green fluorescence protein facilitated the precise detection of LHRH-producing neuronal cell bodies and processes. This is the first study to report on synaptic inputs to LHRH-containing neurons at the ultrastructural level using this transgenic model. We also used immunohistochemistry to investigate the neuronal interaction between GALP- and LHRH-containing neurons. The experiments revealed that GALP-containing nerve terminals lie in close apposition with LHRH-containing cell bodies and processes in the medial preoptic area and the bed nucleus of the stria terminalis. At the ultrastructural level, the GALP-positive nerve terminals were found to make axo-somatic and axo-dendritic synaptic contacts with the EGFP-positive neurons in these areas. These results strongly suggest that GALP-containing neurons provide direct input to LHRH-containing neurons and that GALP plays a crucial role in the regulation of LH secretion via LHRH.


Assuntos
Peptídeo Semelhante a Galanina/biossíntese , Hormônio Liberador de Gonadotropina/biossíntese , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Núcleos Septais/metabolismo , Sinapses/ultraestrutura , Animais , Animais Geneticamente Modificados , Corantes Fluorescentes/análise , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Masculino , Neurônios/ultraestrutura , Área Pré-Óptica/ultraestrutura , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Núcleos Septais/ultraestrutura
16.
Neurosci Lett ; 385(2): 110-3, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-15961227

RESUMO

Salusins are two newly discovered TOR-related peptides consisting of 28 and 20 amino acids and designated salusin-alpha and salusin-beta, respectively. Using immunohistochemistry techniques, salusin-like immunoreactivity was detected in the rat hypothalamo-neurohypophyseal tract and immunopositive cells were distributed in the suprachiasmatic, supraoptic and paraventricular nucleus. In the paraventricular nucleus, salusin-like immunoreactivity was observed both in parvocellular and magnocellular neurons. Many salusin-positive nerve fibers and their terminals were identified in the internal layer of the median eminence and posterior pituitary. Less intense salusin-positive staining of fibers and terminals was found in the suprachiasmatic nucleus and external layer of the median eminence. Dual immunostaining was performed to determine if salusin coexisted with vasopressin or oxytocin in the hypothalamus. Most of the salusin-like immunoreactivity was detected in vasopressin- but not in oxytocin-containing neurons in these nuclei. The functional significance of the coexistence of salusin with vasopressin is discussed, including the possibility that salusin participates in the regulation of blood pressure.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Vasopressinas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Pressão Sanguínea/fisiologia , Sistema Hipotálamo-Hipofisário/anatomia & histologia , Hipotálamo/anatomia & histologia , Imuno-Histoquímica , Masculino , Eminência Mediana/citologia , Eminência Mediana/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neuro-Hipófise/citologia , Neuro-Hipófise/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Núcleo Supraquiasmático/metabolismo , Núcleo Supraóptico/metabolismo , Vasoconstrição/fisiologia
17.
Regul Pept ; 126(1-2): 67-71, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15620416

RESUMO

Ghrelin, a novel peptide isolated from stomach tissue of rats and humans, has been identified as the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). In addition to its secretion from the stomach, ghrelin is also expressed in the hypothalamic arcuate nucleus, intestine, kidney, placenta, and pancreas. GHS-R mRNA, on the other hand, is expressed in the hypothalamus, pituitary, heart, lung, liver, pancreas, stomach, intestine, and adipose tissue. Ghrelin is considered to have important roles in feeding regulation and energy metabolism as well as in the release of growth hormone (GH). Recent physiological experiments on the pancreas have shown that ghrelin regulates insulin secretion. However, sites of action of ghrelin in the pancreas are yet to be identified. In this study, to gain insight into the role of ghrelin in rat pancreatic islets, we used immunohistochemistry to determine the localization of ghrelin and GHS-R in islet cells. Double fluorescence immunohistochemistry revealed that weak GHS-R-like immunoreactivity was found in B cells containing insulin. GHS-R immunoreactivity overlapped that of glucagon-like immunoreactive cells. Moreover, both ghrelin and GHS-R-like immunoreactivities were detected mostly in the same cells in the periphery of the islets of Langerhans. These observations suggest that ghrelin is synthesized and secreted from A cells, and acts back on A cells in an autocrine and/or paracrine manner. In addition, ghrelin may act on B cells via GHS-R to regulate insulin secretion.


Assuntos
Ilhotas Pancreáticas/metabolismo , Hormônios Peptídicos/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Animais , Grelina , Hormônio do Crescimento/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Grelina
19.
Nihon Yakurigaku Zasshi ; 123(4): 243-52, 2004 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-15056939

RESUMO

Ischemic delayed neuronal cell death (apoptosis) in the hippocampus is prevented by PACAP. PACAP inhibits the increasing activity of the MAP kinase family, especially on JNK/SAPK and p38, thereby protecting against apoptotic cell death. After the ischemia-reperfusion, both pyramidal cells and astrocytes increased their expression of PACAP receptors (PAC1-Rs). The pyramidal cells degenerated but reactive astrocytes increased their expression of PAC1-R. PACAP does not only inhibit apoptotic cell death directly, but also affects astrocytes through PAC1-Rs. Interleukin-6 (IL-6), produced in astrocytes, has several effects on the prevention of brain ischemia and trauma and stimulating neuronal growth. IL-6 secretion into the CSF was markedly stimulated after PACAP infusion, suggesting that PACAP stimulates IL-6 secretion from astrocytes. We studied the effects of PACAP on the wild type and IL-6 KO mice after brain ischemia. In wild-type animals, PACAP significantly inhibited cell death, but in IL-6 KO animals, no cytoprotective effect of PACAP was seen. These results suggest that PACAP inhibits apoptotic cell death partly through IL-6. It is considered that PACAP itself and IL-6, stimulated secretion by PACAP, both synergistically inhibit the JNK/SAPK and p38 signaling pathway, thereby protecting against neuronal cell death.


Assuntos
Apoptose/genética , Isquemia Encefálica/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno , Neuropeptídeos/fisiologia , Animais , Astrócitos/metabolismo , Isquemia Encefálica/patologia , Hipocampo/citologia , Interleucina-6/metabolismo , Interleucina-6/fisiologia , MAP Quinase Quinase 4 , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores do Hormônio Hipofisário/metabolismo , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno
20.
Anat Sci Int ; 78(3): 123-38, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14527127

RESUMO

The hypothalamus is a region of the brain that plays a critical role in feeding regulation. It has been revealed by various physiological experiments that the feeding-regulating center is confined to the ventromedial hypothalamus, lateral hypothalamus (LH) and arcuate nucleus (ARC). Many kinds of neurons in these areas of the hypothalamus express factors such as melanin-concentrating hormone (MCH), neuropeptide Y (NPY), proopiomelanocortin (POMC), orexin (OX) and ghrelin, which have been implicated in feeding regulation. In tissues of the periphery, two critical factors involved in feeding regulation, leptin and ghrelin, have been identified. Both hormone peptides are secreted mainly from adipose and stomach tissue, respectively, and are considered to function via their receptors mainly through several hypothalamic nuclei that play important roles in the regulation of appetite. The present review looks mainly at the functional significance of feeding-regulation factors, such as those described above, and the humoral and neuronal interactions among these compounds in the hypothalamus by drawing on published reports of morphological and physiological analyses. Immunohistochemical and in situ hybridization experiments indicate that both leptin and ghrelin receptors are distributed in the hypothalamus and that there are reciprocal interactions between MCH and OX neurons in the LH. Morphological and physiological studies on single living cells isolated from fresh rat hypothalamus or with receptor agonist and antagonist combined with immunohistochemisry clearly demonstrate that both leptin and OX reciprocally regulate NPY- and POMC-containing neurons in the ARC and that ghrelin may regulate feeding status independently through direct OX and NPY pathways. In this way, cross-talking systems in the hypothalamus play a role in determining feeding states.


Assuntos
Regulação do Apetite/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Rede Nervosa/metabolismo , Neuropeptídeos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Grelina , Humanos , Hipotálamo/citologia , Leptina/metabolismo , Rede Nervosa/citologia , Orexinas , Hormônios Peptídicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA