Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Dairy Sci ; 106(12): 9393-9409, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641252

RESUMO

Bovine leukemia virus (BLV) has spread worldwide and causes serious problems in the cattle industry owing to the lack of effective treatments and vaccines. Bovine leukemia virus is transmitted via horizontal and vertical infection, and cattle with high BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, are considered major infectious sources within herds. The PVL strongly correlates with highly polymorphic bovine lymphocyte antigen (BoLA)-DRB3 alleles. The BoLA-DRB3*015:01 and *012:01 alleles are known susceptibility-associated markers related to high PVL, and cattle with susceptible alleles may be at a high risk of BLV transmission via direct contact with healthy cows. In contrast, the BoLA-DRB3*009:02 and *014:01:01 alleles comprise resistant markers associated with the development of low PVL, and cattle with resistant alleles may be low-risk spreaders for BLV transmission and disrupt the BLV transmission chain. However, whether polymorphisms in BoLA-DRB3 are useful for BLV eradication in farms remains unknown. Here, we conducted a validation trial of the integrated BLV eradication strategy to prevent new infection by resistant cattle and actively eliminate susceptible cattle in addition to conventional BLV eradication strategies to maximally reduce the BLV prevalence and PVL using a total of 342 cattle at 4 stall-barn farms in Japan from 2017 to 2019. First, we placed the resistant milking cattle between the BLV-positive and BLV-negative milking cattle in a stall barn for 3 yr. Interestingly, the resistant cattle proved to be an effective biological barrier to successfully block the new BLV infections in the stall-barn system among all 4 farms. Concomitantly, we actively eliminated cattle with high PVL, especially susceptible cattle. Indeed, 39 of the 60 susceptible cattle (65%), 76 of the 140 neutral cattle (54%), and 20 of the 41 resistant cattle (48.8%) were culled on 4 farms for 3 years. Consequently, BLV prevalence and mean PVL decreased in all 4 farms. In particular, one farm achieved BLV-free status in May 2020. By decreasing the number of BLV-positive animals, the revenue-enhancing effect was estimated to be ¥5,839,262 ($39,292.39) for the 4 farms over 3 yr. Our results suggest that an integrated BLV eradication program utilization of resistant cattle as a biological barrier and the preferential elimination of susceptible cattle are useful for BLV infection control.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Feminino , Alelos , Suscetibilidade a Doenças/veterinária , Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade
2.
Pathogens ; 12(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678478

RESUMO

Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis. However, the propagation and distribution of BLV after primary infection still need to be fully elucidated. Here, we experimentally infected seven cattle with BLV and analyzed the BLV proviral load (PVL) in the blood and various organs. BLV was first detected in the blood of the cattle after one week, and the blood PVL increased for three weeks after infection. The PVL was maintained at a high level in five cattle, while it decreased to a low or medium level in two cattle. BLV was distributed in various organs, such as the heart, lung, liver, kidney, abomasum, and thymus, and, notably, in the spleen and lymph nodes. In cattle with a high blood PVL, BLV was detected in organs other than the spleen and lymph nodes, whereas in those with a low blood PVL, BLV was only detected in the spleen and lymph nodes. The amount of BLV in the organs was comparable to that in the blood. Our findings point to the possibility of estimating the distribution of BLV provirus in organs, lymph nodes, and body fluids by measuring the blood PVL, as it was positively correlated with the biodistribution of BLV provirus in the body of BLV infection during early stages.

3.
Retrovirology ; 19(1): 24, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329491

RESUMO

Bovine leukemia virus (BLV) infects cattle, integrates into host DNA as a provirus, and induces malignant B-cell lymphoma. Previous studies have addressed the impact of proviral integration of BLV on BLV-induced leukemogenesis. However, no studies have monitored sequential changes in integration sites in which naturally infected BLV individuals progress from the premalignant stage to the terminal disease. Here, we collected blood samples from a single, naturally infected Holstein cow at three disease progression stages (Stage I: polyclonal stage, Stage II: polyclonal toward oligoclonal stage, Stage III: oligoclonal stage) and successfully visualized the kinetics of clonal expansion of cells carrying BLV integration sites using our BLV proviral DNA-capture sequencing method. Although 24 integration sites were detected in Stages I and II, 92% of these sites experienced massive depletion in Stage III. Of these sites, 46%, 37%, and 17% were located within introns of Refseq genes, intergenic regions, and repetitive sequences, respectively. At Stage III cattle with lymphoma, only two integration sites were generated de novo in the intergenic region of Chr1, and the intron of the CHEK2 gene on Chr17 was significantly increased. Our results are the first to demonstrate clonal expansion after the massive depletion of cells carrying BLV integration sites in a naturally infected cow.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Vírus da Leucemia Bovina/genética , Provírus/genética , Integração Viral , Progressão da Doença
4.
Retrovirology ; 19(1): 7, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585539

RESUMO

BACKGROUND: The potential risk and association of bovine leukemia virus (BLV) with human remains controversial as it has been reported to be both positive and negative in human breast cancer and blood samples. Therefore, establishing the presence of BLV in comprehensive human clinical samples in different geographical locations is essential. RESULT: In this study, we examined the presence of BLV proviral DNA in human blood and breast cancer tissue specimens from Japan. PCR analysis of BLV provirus in 97 Japanese human blood samples and 23 breast cancer tissues showed negative result for all samples tested using long-fragment PCR and highly-sensitive short-fragment PCR amplification. No IgG and IgM antibodies were detected in any of the 97 human serum samples using BLV gp51 and p24 indirect ELISA test. Western blot analysis also showed negative result for IgG and IgM antibodies in all tested human serum samples. CONCLUSION: Our results indicate that Japanese human specimens including 97 human blood, 23 breast cancer tissues, and 97 serum samples were negative for BLV.


Assuntos
Anticorpos Antivirais , DNA Viral , Vírus da Leucemia Bovina , Provírus , Anticorpos Antivirais/isolamento & purificação , Sangue/virologia , Neoplasias da Mama/virologia , DNA Viral/isolamento & purificação , Feminino , Humanos , Imunoglobulina G/isolamento & purificação , Imunoglobulina M/isolamento & purificação , Japão , Vírus da Leucemia Bovina/genética , Vírus da Leucemia Bovina/imunologia , Provírus/genética
5.
Pathogens ; 11(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35215153

RESUMO

Bovine leukemia virus (BLV), which causes enzootic bovine leukosis, is transmitted to calves through the milk of BLV-infected dams. Bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and proviral load (PVL). However, the effect of BoLA-DRB3 polymorphism on the infectivity and PVL of milk from BLV-infected dams remains unknown. This study examined milk from 259 BLV-infected dams, including susceptible dams carrying at least one BoLA-DRB3*012:01 or *015:01 allele with high PVL, resistant dams carrying at least one BoLA-DRB3*002:01, *009:02, or *014:01:01 allele with low PVL, and neutral dams carrying other alleles. The detection rate of BLV provirus and PVL were significantly higher in milk from susceptible dams than in that from resistant dams. This result was confirmed in a three-year follow-up study in which milk from susceptible dams showed a higher BLV provirus detection rate over a longer period than that from resistant dams. The visualization of infectivity of milk cells using a luminescence syncytium induction assay showed that the infectious risk of milk from BLV-infected dams was markedly high for susceptible dams compared to resistant ones. This is the first report confirming that BoLA-DRB3 polymorphism affects the PVL and infectivity of milk from BLV-infected dams.

6.
Pathogens ; 10(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34684230

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis. Polymorphism in bovine lymphocyte antigen (BoLA)-DRB3 alleles is related to susceptibility to BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk. However, whether differential BoLA-DRB3 affects BLV infectivity remains unknown. In a three-year follow-up investigation using a luminescence syncytium induction assay for evaluating BLV infectivity, we visualized and evaluated the kinetics of BLV infectivity in cattle with susceptible, resistant and neutral BoLA-DRB3 alleles which were selected from 179 cattle. Susceptible cattle showed stronger BLV infectivity than both resistant and neutral cattle. The order of intensity of BLV infectivity was as follows: susceptible cattle > neutral cattle > resistant cattle. BLV infectivity showed strong positive correlation with PVL at each testing point. BLV-infected susceptible cattle were found to be at higher risk of horizontal transmission, as they had strong infectivity and high PVL, whereas BLV-infected resistant cattle were low risk of BLV transmission owing to weak BLV infection and low PVL. Thus, this is the first study to demonstrate that the BoLA-DRB3 polymorphism is associated with BLV infection.

7.
J Virol Methods ; 297: 114264, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34411645

RESUMO

The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease in cattle. We previously developed the quantitative real-time PCR (qPCR) assay to measure the proviral loads of BLV using coordination of common motif (CoCoMo) degenerate primers. We here found four single mutations within the probe region of the original BLV-CoCoMo-qPCR assay, three of which have negative impact on its sensitivity in the probe sequences of the long terminal regions of the BLV-CoCoMo-qPCR-2 assay, using genomic DNA from 887 cows from 27 BLV-positive farms via a nationwide survey conducted in 2011 and 2017 in Japan. Therefore, the modified probes were designed to completely match the three BLV mutant strains identified here. Moreover, we examined the optimum ratio of the concentration to be mixed with the wild type and three new BLV TaqMan probes were designed here using genomic DNAs extracted from cattle naturally infected with the wild type BLV strain and three mutant strains. Finally, we successfully established an improved assay maintained the original sensitivity and reproducibility and can detect novel BLV strains.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Leucose Enzoótica Bovina/diagnóstico , Feminino , Vírus da Leucemia Bovina/genética , Provírus/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
8.
HLA ; 98(2): 132-139, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33896123

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leucosis. Host genetic heterozygosity at the major histocompatibility complex can enhance the ability to combat infectious diseases. However, heterozygote advantage is loci specific and depends on disease type. Bovine leukocyte antigen (BoLA)-DRB3 polymorphisms are related with BLV-infection outcome; however, whether BoLA-DRB3 heterozygotes have an advantage against BLV-induced lymphoma and proviral load (PVL) remains unclear. By analyzing 1567 BLV-infected individuals, we found that BoLA-DRB3 heterozygous status was significantly associated with lymphoma resistance irrespective of cattle breeds (p < 0.0001). Similarly, decreased PVL was observed in BoLA-DRB3 heterozygotes (p = 0.0407 for Holstein cows; p = 0.0889 for Japanese Black cattle). Our report provides first evidence of BoLA-DRB3 heterozygote advantage against BLV infection outcome.


Assuntos
Vírus da Leucemia Bovina , Alelos , Animais , Bovinos , Feminino , Heterozigoto , Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina/genética , Complexo Principal de Histocompatibilidade
9.
Pathogens ; 10(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917549

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leucosis, a malignant B-cell lymphoma in cattle. The DNA sequence polymorphisms of bovine leukocyte antigen (BoLA)-DRB3 have exhibited a correlation with BLV-induced lymphoma in Holstein cows. However, the association may vary between different cattle breeds. Furthermore, little is known about the relationship between BLV-induced lymphoma and DRB3 at the amino acid and structural diversity levels. Here, we comprehensively analyzed the correlation between BLV-induced lymphoma and DRB3 at DNA, amino acid, and binding pocket property levels, using 106 BLV-infected asymptomatic and 227 BLV-induced lymphoma Japanese black cattle samples. DRB3*011:01 was identified as a resistance allele, whereas DRB3*005:02 and DRB3*016:01 were susceptibility alleles. Amino acid association studies showed that positions 9, 11, 13, 26, 30, 47, 57, 70, 71, 74, 78, and 86 were associated with lymphoma susceptibility. Structure and electrostatic charge modeling further indicated that binding pocket 9 of resistance DRB3 was positively charged. In contrast, alleles susceptible to lymphoma were neutrally charged. Altogether, this is the first association study of BoLA-DRB3 polymorphisms with BLV-induced lymphoma in Japanese black cattle. In addition, our results further contribute to understanding the mechanisms regarding how BoLA-DRB3 polymorphisms mediate susceptibility to BLV-induced lymphoma.

10.
Pathogens ; 10(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922152

RESUMO

Perinatal transmission plays a critical role in the spread of bovine leukemia virus (BLV) infection in cattle herds. In the Holstein breed, we previously identified BLV resistant and susceptible bovine leukocyte antigen (BoLA)-DRB3 alleles, including BoLA-DRB3*009:02 and *014:01:01 with a low BLV proviral load (PVL), and *015:01 and *012:01 with a high PVL. Here, we evaluated the perinatal BLV transmission risk in dams with different BoLA-DRB3 alleles. BoLA-DRB3 alleles of 120 dam-calf pairs from five dairy farms in Japan were identified; their PVL was quantified using the BLV-Coordination of Common Motifs (CoCoMo)-qPCR-2 assay. Ninety-six dams were BLV-positive, and 29 gave birth to BLV-infected calves. Perinatal transmission frequency was 19% in dams with resistant alleles suppressed to a low PVL level, and 38% and 25% in dams with susceptible and neutral alleles that maintained high PVL levels, respectively. Notably, all calves with resistant alleles were BLV free, whereas 30% of calves with susceptible genes were infected. Thus, vertical transmission risk was extremely lower for dams and calves with resistant alleles compared to those with susceptible alleles. Our results can inform the development of effective BLV eradication programs under field conditions by providing necessary data to allow for optimal selection of dams for breeding.

11.
Pathogens ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143351

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leukosis, a malignant form of B-cell lymphoma, and is closely related to human T-cell leukemia viruses. We investigated whether BLV infection affects host genes associated with DNA mismatch repair (MMR). Next-generation sequencing of blood samples from five calves experimentally infected with BLV revealed the highest expression levels of seven MMR genes (EXO1, UNG, PCNA, MSH2, MSH3, MSH6, and PMS2) at the point of peak proviral loads (PVLs). Furthermore, MMR gene expression was only upregulated in cattle with higher PVLs. In particular, the expression levels of MSH2, MSH3, and UNG positively correlated with PVL in vivo. The expression levels of all seven MMR genes in pig kidney-15 cells and the levels of PMS2 and EXO1 in HeLa cells also increased tendencies after transient transfection with a BLV infectious clone. Moreover, MMR gene expression levels were significantly higher in BLV-expressing cell lines compared with those in the respective parental cell lines. Expression levels of MSH2 and EXO1 in BLV-infected cattle with lymphoma were significantly lower and higher, respectively, compared with those in infected cattle in vivo. These results reveal that BLV infection affects MMR gene expression, offering new candidate markers for lymphoma diagnosis.

12.
Viruses ; 12(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560231

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle and is closely related to human T-cell leukemia viruses. We investigated the role of a new host protein, PRMT5, in BLV infection. We found that PRMT5 is overexpressed only in BLV-infected cattle with a high proviral load, but not in those with a low proviral load. Furthermore, this upregulation continued to the lymphoma stage. PRMT5 expression was upregulated in response to experimental BLV infection; moreover, PRMT5 upregulation began in an early stage of BLV infection rather than after a long period of proviral latency. Second, siRNA-mediated PRMT5 knockdown enhanced BLV gene expression at the transcript and protein levels. Additionally, a selective small-molecule inhibitor of PRMT5 (CMP5) enhanced BLV gene expression. Interestingly, CMP5 treatment, but not siRNA knockdown, altered the gp51 glycosylation pattern and increased the molecular weight of gp51, thereby decreasing BLV-induced syncytium formation. This was supported by the observation that CMP5 treatment enhanced the formation of the complex type of N-glycan more than the high mannose type. In conclusion, PRMT5 overexpression is related to the development of BLV infection with a high proviral load and lymphoma stage and PRMT5 inhibition enhances BLV gene expression. This is the first study to investigate the role of PRMT5 in BLV infection in vivo and in vitro and to reveal a novel function for a small-molecule compound in BLV-gp51 glycosylation processing.


Assuntos
Leucose Enzoótica Bovina/enzimologia , Leucose Enzoótica Bovina/virologia , Células Gigantes/virologia , Vírus da Leucemia Bovina/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Bovinos , Leucose Enzoótica Bovina/genética , Regulação Viral da Expressão Gênica , Células Gigantes/enzimologia , Glicosilação , Interações Hospedeiro-Patógeno , Proteína-Arginina N-Metiltransferases/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Viruses ; 12(3)2020 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235771

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. However, less than 5% of BLV-infected cattle will develop lymphoma, suggesting that, in addition to viral infection, host genetic polymorphisms might play a role in disease susceptibility. Bovine leukocyte antigen (BoLA)-DRB3 is a highly polymorphic gene associated with BLV proviral load (PVL) susceptibility. Due to the fact that PVL is positively associated with disease progression, it is believed that controlling PVL can prevent lymphoma development. Thus, many studies have focused on the relationship between PVL and BoLA-DRB3. Despite this, there is little information regarding the relationship between lymphoma and BoLA-DRB3. Furthermore, whether or not PVL-associated BoLA-DRB3 is linked to lymphoma-associated BoLA-DRB3 has not been clarified. Here, we investigated whether or not lymphoma-associated BoLA-DRB3 is correlated with PVL-associated BoLA-DRB3. We demonstrate that two BoLA-DRB3 alleles were specifically associated with lymphoma resistance (*010:01 and *011:01), but no lymphoma-specific susceptibility alleles were found; furthermore, two other alleles, *002:01 and *012:01, were associated with PVL resistance and susceptibility, respectively. In contrast, lymphoma and PVL shared two resistance-associated (DRB3*014:01:01 and *009:02) BoLA-DRB3 alleles. Interestingly, we found that PVL associated alleles, but not lymphoma associated alleles, are related with the anti-BLV gp51 antibody production level in cows. Overall, our study is the first to demonstrate that the BoLA-DRB3 polymorphism confers differential susceptibility to BLV-induced lymphoma and PVL.


Assuntos
Leucose Enzoótica Bovina/complicações , Leucose Enzoótica Bovina/virologia , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina/fisiologia , Linfoma/veterinária , Polimorfismo Genético , Provírus/genética , Alelos , Animais , Bovinos , Haplótipos , Carga Viral
14.
Arch Virol ; 165(1): 207-214, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776677

RESUMO

Bovine leukemia virus (BLV) infects cattle worldwide and causes B-cell lymphoma in cattle. BLV has been identified in human breast and lung cancer and in blood, but the association of BLV and human cancer is controversial. In this study, we investigated the existence of BLV in 145 Japanese human blood cell lines and 54 human cancer cell lines, using a new highly sensitive PCR assay that can amplify even one copy of BLV using LTR primers different from those in previous studies on BLV provirus in breast cancer. All samples were found negative for BLV provirus, suggesting that BLV is unlikely to infect humans.


Assuntos
Células Sanguíneas/virologia , Linhagem Celular Tumoral/virologia , Vírus da Leucemia Bovina/isolamento & purificação , Zoonoses/diagnóstico , Adulto , Idoso , Animais , Células Sanguíneas/citologia , Linhagem Celular , Linhagem Celular Tumoral/citologia , Feminino , Humanos , Japão , Vírus da Leucemia Bovina/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Sequências Repetidas Terminais , Adulto Jovem , Zoonoses/virologia
15.
Vet Res ; 50(1): 102, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783914

RESUMO

Bovine leukemia virus (BLV) infects cattle and causes serious problems for the cattle industry, worldwide. Vertical transmission of BLV occurs via in utero infection and ingestion of infected milk and colostrum. The aim of this study was to clarify whether milk is a risk factor in BLV transmission by quantifying proviral loads in milk and visualizing the infectivity of milk. We collected blood and milk from 48 dams (46 BLV seropositive dams and 2 seronegative dams) from seven farms in Japan and detected the BLV provirus in 43 blood samples (89.6%) but only 22 milk samples (45.8%) using BLV-CoCoMo-qPCR-2. Although the proviral loads in the milk tended to be lower, a positive correlation was firstly found between the proviral loads with blood and milk. Furthermore, the infectivity of milk cells with BLV was visualized ex vivo using a luminescence syncytium induction assay (LuSIA) based on CC81-GREMG cells, which form syncytia expressing enhanced green fluorescent protein (EGFP) in response to BLV Tax and Env expressions when co-cultured with BLV-infected cells. Interestingly, in addition to one BLV-infected dam with lymphoma, syncytia with EGFP fluorescence were observed in milk cells from six BLV-infected, but healthy, dams by an improved LuSIA, which was optimized for milk cells. This is the first report demonstrating the infectious capacity of cells in milk from BLV-infected dams by visualization of BLV infection ex vivo. Thus, our results suggest that milk is a potential risk factor for BLV vertical spread through cell to cell transmission.


Assuntos
Leucose Enzoótica Bovina/transmissão , Vírus da Leucemia Bovina/fisiologia , Leite/virologia , Provírus/fisiologia , Carga Viral/veterinária , Animais , Bovinos , Feminino , Japão , Fatores de Risco
16.
Virol J ; 16(1): 157, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842930

RESUMO

BACKGROUND: Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia virus, is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly prolonged course involving persistent lymphocytosis and B-cell lymphoma. The bovine major histocompatibility complex class II region plays a key role in the subclinical progression of BLV infection. In this study, we aimed to evaluate the roles of CD4+ T-cell epitopes in disease progression in cattle. METHODS: We examined five Japanese Black cattle, including three disease-susceptible animals, one disease-resistant animal, and one normal animal, classified according to genotyping of bovine leukocyte antigen (BoLA)-DRB3 and BoLA-DQA1 alleles using polymerase chain reaction sequence-based typing methods. All cattle were inoculated with BLV-infected blood collected from BLV experimentally infected cattle and then subjected to CD4+ T-cell epitope mapping by cell proliferation assays. RESULTS: Five Japanese Black cattle were successfully infected with BLV, and CD4+ T-cell epitope mapping was then conducted. Disease-resistant and normal cattle showed low and moderate proviral loads and harbored six or five types of CD4+ T-cell epitopes, respectively. In contrast, the one of three disease-susceptible cattle with the highest proviral load did not harbor CD4+ T-cell epitopes, and two of three other cattle with high proviral loads each had only one epitope. Thus, the CD4+ T-cell epitope repertoire was less frequent in disease-susceptible cattle than in other cattle. CONCLUSION: Although only a few cattle were included in this study, our results showed that CD4+ T-cell epitopes may be associated with BoLA-DRB3-DQA1 haplotypes, which conferred differential susceptibilities to BLV proviral loads. These CD4+ T-cell epitopes could be useful for the design of anti-BLV vaccines targeting disease-susceptible Japanese Black cattle. Further studies of CD4+ T-cell epitopes in other breeds and using larger numbers of cattle with differential susceptibilities are required to confirm these findings.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Leucose Enzoótica Bovina/imunologia , Leucose Enzoótica Bovina/virologia , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Vírus da Leucemia Bovina/imunologia , Animais , Bovinos , Progressão da Doença , Suscetibilidade a Doenças , Antígenos HLA/genética , Haplótipos , Japão
17.
J Am Vet Med Assoc ; 254(11): 1335-1340, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067187

RESUMO

OBJECTIVE: To determine the prevalence of bovine leukemia virus (BLV) in beef bulls; evaluate the presence of BLV provirus DNA in blood, smegma, and semen samples; and analyze whether blood BLV proviral load was associated with differential blood cell counts. DESIGN: Observational cross-sectional study. ANIMALS: 121 beef bulls ≥ 2 years old from 39 Michigan herds. PROCEDURES: Blood, smegma, and semen samples were collected from each bull during a routine breeding soundness examination. An ELISA was used to detect serum anti-BLV antibodies. A coordination of common motifs-quantitative PCR assay was used to detect BLV provirus DNA in blood, smegma, and semen samples. Bulls with positive results on both the BLV serum ELISA and coordination of common motifs-quantitative PCR assay were considered infected with BLV. RESULTS: 19 of 39 (48.7%) herds and 54 of 121 (44.6%) bulls were infected with BLV. Provirus DNA was detected in the blood of all 54 and in smegma of 4 BLV-infected bulls but was not detected in any semen sample. Lymphocyte count was significantly greater in BLV-infected bulls than in uninfected bulls. The proportion of BLV-infected bulls with lymphocytosis (16/54 [29.6%]) was greater than the proportion of uninfected bulls with lymphocytosis (6/67 [9%]). Lymphocyte count was positively associated with BLV proviral load in BLV-infected bulls. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that almost half of beef bulls and herds were infected with BLV, and BLV provirus DNA was detected in the smegma of some BLV-infected bulls. Bulls may have an important role in BLV transmission in beef herds.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Cruzamento , Bovinos , Estudos Transversais , Leucose Enzoótica Bovina/transmissão , Masculino
18.
Retrovirology ; 16(1): 14, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096993

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leukosis and is closely related to the human T-lymphotropic virus. Bovine major histocompatibility complex (BoLAs) are used extensively as markers of disease and immunological traits in cattle. For BLV diagnosis, proviral load is a major diagnosis index for the determination of disease progression and transmission risk. Therefore, we investigated the frequency of BoLA-DRB3 alleles, BoLA-DQA1 alleles, and haplotypes of BoLA class II isolated from the heads of 910 BLV-infected cows out of 1290 cows assessed from BLV-positive farms, in a nationwide survey from 2011 to 2014 in Japan. Our aim was to identify BoLA class II polymorphisms associated with the BLV proviral load in the Holstein cow. The study examined 569 cows with a high proviral load and 341 cows with a low proviral load. Using the highest odds ratio (OR) as a comparison index, we confirmed that BoLA-DRB3 was the best marker for determining which cow spread the BLV (OR 13.9 for BoLA-DRB3, OR 11.5 for BoLA-DQA1, and OR 6.2 for BoLA class II haplotype). In addition, DRB3*002:01, *009:02, *012:01, *014:01, and *015:01 were determined as BLV provirus associated alleles. BoLA-DRB3*002:01, *009:02, and *014:01 were determined as resistant alleles (OR > 1), and BoLA-DRB3*012:01 and *015:01 were determined as susceptible alleles (OR < 1). In this study, we showed that BoLA-DRB3 was a good marker for determining which cow spread BLV, and we found not only one resistant allele (BoLA-DRB3*009:02), but also two other disease-resistant alleles and two disease-susceptible alleles. This designation of major alleles as markers of susceptibility or resistance can allow the determination of the susceptibility or resistance of most cows to disease. Overall, the results of this study may be useful in eliminating BLV from farms without having to separate cows into several cowsheds.


Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina , Polimorfismo Genético , Provírus , Carga Viral , Alelos , Animais , Bovinos , Resistência à Doença/genética , Feminino , Predisposição Genética para Doença , Haplótipos , Japão , Fenótipo
19.
Arch Virol ; 164(1): 201-211, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30311076

RESUMO

Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis. Here, we designed a p24 enzyme-linked immunosorbent assay (ELISA) to detect antibodies specific for BLV capsid protein p24 (encoded by the gag gene) in bovine serum samples. The p24 gene was inserted into an Escherichia coli expression system, and recombinant proteins (GST-p24, p24, and His-p24) were purified. His-p24 was the most suitable antigen for using in the ELISA. The cut-off point was calculated from a receiver operating characteristic curve derived from a set of 582 field samples that previously tested positive or negative by BLV-CoCoMo-qPCR-2, which detects BLV provirus. The new p24 ELISA showed almost the same specificity and sensitivity as a commercial gp51 ELISA kit when used to test field serum samples, and allowed monitoring of p24 antibodies in raw milk and whey. Comparing the results for the p24 ELISA and gp51 ELISA revealed that p24 antibodies were detected earlier than gp51 antibodies in three out of eight calves experimentally infected with BLV, indicating improved detection without diminishing BLV serodiagnosis. Thus, the p24 ELISA is a robust and reliable assay for detecting BLV antibodies in serum or milk, making it is a useful tool for large-scale BLV screening.


Assuntos
Leucose Enzoótica Bovina/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Vírus da Leucemia Bovina/isolamento & purificação , Leite/virologia , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/isolamento & purificação , Bovinos , Leucose Enzoótica Bovina/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Regulação Viral da Expressão Gênica
20.
Virus Res ; 253: 103-111, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29913249

RESUMO

Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis (EBL), which causes enormous economic losses in the livestock industry worldwide. To reduce the economic loss caused by BLV infection, it is important to clarify the characters associated with BLV transmissibility and pathogenesis in cattle. In this study, we focused on viral characters and examined spontaneous mutations in the virus and viral properties by analyses of whole genome sequences and BLV molecular clones derived from cows with and without EBL. Genomic analysis indicated that all 28 strains harbored limited genetic variations but no deletion mutations that allowed classification into three groups (A, B, and C), except for one strain. Some nucleotide/amino acid substitutions were specific to a particular group. On the other hand, these genetic variations were not associated with the host bovine leukocyte antigen-DRB3 allele, which is known to be related to BLV pathogenesis. The viral replication activity in vitro was high, moderate, and low in groups A, B, and C, respectively. In addition, the proviral load, which is related to BLV transmissibility and pathogenesis, was high in cows infected with group A strains and low in those infected with group B/C strains. Therefore, these results suggest that limited genetic variations could affect viral properties relating to BLV transmissibility and pathogenesis.


Assuntos
Leucose Enzoótica Bovina/virologia , Variação Genética , Genoma Viral , Vírus da Leucemia Bovina/genética , Animais , Bovinos , Vírus da Leucemia Bovina/classificação , Vírus da Leucemia Bovina/isolamento & purificação , Vírus da Leucemia Bovina/fisiologia , Filogenia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA