Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 377: 114781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636773

RESUMO

Chronic hypoxia in utero causes intrauterine growth restriction (IUGR) of the fetus. IUGR infants are known to be at higher risk for neurodevelopmental disorders, but the mechanism is unclear. In this study, we analyzed the structure of the cerebral cortex using IUGR model rats generated through a reduced uterine perfusion pressure operation. IUGR rats exhibited thinner cerebral white matter and enlarged lateral ventricles compared with control rats. Expression of neuron cell markers, Satb2, microtubule-associated protein (MAP)-2, α-tubulin, and nestin was reduced in IUGR rats, indicating that neurons were diminished at various developmental stages in IUGR rats, from neural stem cells to mature neurons. However, there was no increase in apoptosis in IUGR rats. Cells positive for Ki67, a marker of cell proliferation, were reduced in neurons and all glial cells of IUGR rats. In primary neuron cultures, axonal elongation was impaired under hypoxic culture conditions mimicking the intrauterine environment of IUGR infants. Thus, in IUGR rats, chronic hypoxia in utero suppresses the proliferation of neurons and glial cells as well as axonal elongation, resulting in cortical thinning and enlarged lateral ventricles. Thrombopoietin (TPO), a platelet growth factor, inhibited the decrease in neuron number and promoted axon elongation in primary neurons under hypoxic conditions. Intraperitoneal administration of TPO to IUGR rats resulted in increases in the number of NeuN-positive cells and the area coverage of Satb2. In conclusion, suppression of neuronal proliferation and axonal outgrowth in IUGR rats resulted in cortical thinning and enlargement of lateral ventricles. TPO administration might be a novel therapeutic strategy for treating brain dysmaturation in IUGR infants.


Assuntos
Proliferação de Células , Retardo do Crescimento Fetal , Crescimento Neuronal , Neurônios , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Trombopoetina , Animais , Retardo do Crescimento Fetal/patologia , Ratos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Feminino , Proliferação de Células/efeitos dos fármacos , Gravidez , Crescimento Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Animais Recém-Nascidos , Córtex Cerebral/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo
2.
Neurochem Res ; 49(3): 800-813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112974

RESUMO

Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.


Assuntos
Antineoplásicos , Hipotermia , Fármacos Neuroprotetores , Humanos , NF-kappa B/metabolismo , Microglia/metabolismo , Canais de Cátion TRPV/metabolismo , Fármacos Neuroprotetores/farmacologia , Hipotermia/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Óxido Nítrico/metabolismo
3.
Exp Cell Res ; 432(1): 113784, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730144

RESUMO

Atherosclerosis is a persistent inflammatory state that contributes significantly to cardiovascular disease, a primary cause of mortality worldwide. Enhanced lipid uptake by macrophages and their transformation into foam cells play a key role in the development of atherosclerosis. Recent studies using in vivo mouse models indicated that activation of AMPK has anti-atherosclerotic effects by upregulating the expression of cholesterol efflux transporters in foam cells and promoting cholesterol efflux. However, the pathway downstream of AMPK that contributes to elevated expression of cholesterol efflux transporters remains unclear. In this study, we found that activation of AMPK by AICAR and metformin inhibits foam cell formation via suppression of mTOR in macrophages. Specifically, activation of AMPK indirectly reduced the phosphorylation level of mTOR at Ser2448 and promoted the expression of cholesterol efflux transporters and cholesterol efflux. These inhibitory effects on foam cell formation were counteracted by mTOR activators. Metformin, a more nonspecific AMPK activator than AICAR, appears to inhibit foam cell formation via anti-inflammatory effects in addition to suppression of the mTOR pathway. The results of this study suggest that the development of new drugs targeting AMPK activation and mTOR inhibition may lead to beneficial results in the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose , Metformina , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Células Espumosas , Serina-Treonina Quinases TOR/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
4.
Curr Cancer Drug Targets ; 23(11): 837-842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37221685

RESUMO

BACKGROUND: Neuroblastoma is one of the most common childhood solid tumors. Because tumor suppressor genes are often hypermethylated in cancers, DNA methylation has emerged as a target for cancer therapeutics. Nanaomycin A, an inhibitor of DNA methyltransferase 3B, which mediates de novo DNA methylation, reportedly induces death in several types of human cancer cells. OBJECTIVE: To study the antitumor activity of nanaomycin A against neuroblastoma cell lines and its mechanism. METHODS: The anti-tumor effect of nanaomycin A on neuroblastoma cell lines was evaluated based on cell viability, DNA methylation levels, apoptosis-related protein expression, and neuronal-associated mRNA expression. RESULTS: Nanaomycin A decreased genomic DNA methylation levels and induced apoptosis in human neuroblastoma cells. Nanaomycin A also upregulated the expression of mRNAs for several genes related to neuronal maturation. CONCLUSIONS: Nanaomycin A is an effective therapeutic candidate for treating neuroblastoma. Our findings also suggest that the inhibition of DNA methylation is a promising anti-tumor therapy strategy for neuroblastoma.


Assuntos
Naftoquinonas , Neuroblastoma , Humanos , Criança , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Metilação de DNA , Linhagem Celular Tumoral , DNA Metiltransferase 3B
5.
Pediatr Res ; 93(3): 619-624, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35568734

RESUMO

BACKGROUND: Small-for-gestational-age (SGA) infants are at increased risk for transient thrombocytopenia. The aim of this study was to determine whether thrombocytopenia in human SGA infants is due to insufficient thrombopoietin (TPO) production. METHODS: A prospective study of 202 infants with gestational age less than 37 weeks was conducted; 30 of them were SGA infants, and 172 were non-SGA infants. Thrombocytopenia was seen in 17 of 30 SGA infants and 40 of 172 non-SGA infants. RESULTS: Platelet counts were significantly lower in the SGA group than in the non-SGA group at the time of the lowest platelet count within 72 h of birth. The platelet count and immature platelet fraction (IPF) were negatively correlated in non-SGA infants, but not in SGA infants. In addition, the platelet count and TPO were negatively correlated in non-SGA infants. IPF and TPO were significantly lower in SGA than in non-SGA infants with thrombocytopenia. CONCLUSION: IPF increased with thrombocytopenia to promote platelet production in non-SGA infants due to increasing TPO, but not in SGA infants. This study found an association between insufficient TPO production and thrombocytopenia in SGA infants. In addition, this study is important for understanding the etiology of thrombocytopenia in SGA infants. IMPACT: The immature platelet fraction was low, and serum thrombopoietin was not increased in small-for-gestational-age (SGA) infants with thrombocytopenia. Thrombocytopenia in SGA infants is due to insufficient thrombopoietin production. This study is important for understanding the etiology of thrombocytopenia in SGA infants.


Assuntos
Trombocitopenia , Trombopoetina , Feminino , Humanos , Lactente , Estudos Prospectivos , Contagem de Plaquetas , Plaquetas , Retardo do Crescimento Fetal
7.
Cell Mol Neurobiol ; 41(3): 459-468, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32382852

RESUMO

Although therapeutic hypothermia (TH) provides neuroprotection, the cellular mechanism underlying the neuroprotective effect of TH has not yet been fully elucidated. In the present study, we investigated the effect of TH on microglial activation to determine whether hypothermia attenuates neuronal damage via microglial activation. After lipopolysaccharide (LPS) stimulation, BV-2 microglia cells were cultured under normothermic (37 °C) or hypothermic (33.5 °C) conditions. Under hypothermic conditions, expression of pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) was suppressed. In addition, phagocytosis of latex beads was significantly suppressed in BV-2 cells under hypothermic conditions. Moreover, nuclear factor-κB signaling was inhibited under hypothermic conditions. Finally, neuronal damage was attenuated following LPS stimulation in neurons co-cultured with BV-2 cells under hypothermic conditions. In conclusion, hypothermia attenuates neuronal damage via inhibition of microglial activation, including microglial iNOS and pro-inflammatory cytokine expression and phagocytic activity. Investigating the mechanism of microglial activation regulation under hypothermic conditions could contribute to the development of novel neuroprotective therapies.


Assuntos
Citocinas/biossíntese , Hipotermia/patologia , Microglia/patologia , Neurônios/patologia , Fagocitose , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocinas/genética , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA