Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 158(2): 165-72, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25742739

RESUMO

In Escherichia coli, elongation factor G (EF-G), a key protein in translational elongation, is particularly susceptible to oxidation. We demonstrated previously that EF-G is inactivated upon formation of an intramolecular disulphide bond. However, the details of the mechanism by which the oxidation of EF-G inhibits the function of EF-G on the ribosome remain to be elucidated. When we oxidized EF-G with hydrogen peroxide, neither the insertion of EF-G into the ribosome nor single-cycle translocation activity in vitro was affected. However, the GTPase activity and the dissociation of EF-G from the ribosome were suppressed when EF-G was oxidized. The synthesis of longer peptides was suppressed to a greater extent than that of a shorter peptide when EF-G was oxidized. Thus, the formation of the disulphide bond in EF-G might interfere with the hydrolysis of GTP that is coupled with dissociation of EF-G from the ribosome and might thereby retard the turnover of EF-G within the translational machinery. When we added thioredoxin to the suppressed translation system that included oxidized EF-G, translational activity was almost immediately restored. We propose that oxidation of EF-G might provide a regulatory mechanism for transient and reversible suppression of translation in E. coli under oxidative stress.


Assuntos
Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/metabolismo , Guanosina Trifosfato/metabolismo , Peróxido de Hidrogênio/farmacologia , Hidrólise/efeitos dos fármacos , Proteínas Mutantes/metabolismo , Oxirredução , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Tiorredoxinas/metabolismo
2.
PLoS Genet ; 10(9): e1004616, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25233460

RESUMO

Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit. The factor has been suggested to rescue stalled ribosomes in a codon-independent manner. The mechanism of action of this factor was obscure and is addressed here. Using a homologous mitochondria system of purified components, we demonstrate that the integrated ICT1 has no rescue activity. Rather, purified ICT1 binds stoichiometrically to mitochondrial ribosomes in addition to the integrated copy and functions as a general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA from ribosomes stalled at the end or in the middle of an mRNA or even from non-programmed ribosomes. The data suggest that the unusual termination at a sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is also performed by ICT1 challenging a previous model, according to which RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. We also demonstrate by mutational analyses that the unique insertion sequence present in the N-terminal domain of ICT1 is essential for peptide release rather than for ribosome binding. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed.


Assuntos
Códon de Terminação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terminação Traducional da Cadeia Peptídica , Proteínas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Animais , Códon , Humanos , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas , Alinhamento de Sequência , Suínos
3.
J Mol Biol ; 425(18): 3536-48, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23856623

RESUMO

Nuclear respiratory factor 2 (NRF-2) is a mammalian transcription factor composed of two distinct and unrelated proteins: NRF-2α, which binds to DNA through its Ets domain, and NRF-2ß, which contains the transcription activation domain. The activity of NRF-2 in neurons is regulated by nuclear localization; however, the mechanism by which NRF-2 is imported into the nucleus remains unknown. By using in vitro nuclear import assays and immuno-cytofluorescence, we dissect the nuclear import pathways of NRF-2. We show that both NRF-2α and NRF-2ß contain intrinsic nuclear localization signals (NLSs): the Ets domain within NRF-2α and the NLS within NRF-2ß (amino acids 311/321: EEPPAKRQCIE) that is recognized by importin-α:ß. When NRF-2α and NRF-2ß form a complex, the nuclear import of NRF-2αß becomes strictly dependent on the NLS within NRF-2ß. Therefore, the nuclear import mechanism of NRF-2 is unique among Ets factors. The NRF-2ß NLS contains only two lysine/arginine residues, unlike other known importin-α:ß-dependent NLSs. Using ELISA-based binding assays, we show that it is bound by importin-α in almost the same manner and with similar affinity to that of the classical monopartite NLSs, such as c-myc and SV40 T-antigen NLSs. However, the part of the tryptophan array of importin-α that is essential for the recognition of classical monopartite NLSs by generating apolar pockets for the P3 and the P5 lysine/arginine side chains is not required for the recognition of the NRF-2ß NLS. We conclude that the NRF-2ß NLS is an unusual but is, nevertheless, a bona fide monopartite-type NLS.


Assuntos
Núcleo Celular/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Sinais de Localização Nuclear/fisiologia , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Sequência de Aminoácidos , Fator de Transcrição de Proteínas de Ligação GA/química , Fator de Transcrição de Proteínas de Ligação GA/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/genética , alfa Carioferinas/química , beta Carioferinas/química
4.
Nucleic Acids Res ; 41(1): 264-76, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23087377

RESUMO

Ribosomes, after one round of translation, must be recycled so that the next round of translation can occur. Complete disassembly of post-termination ribosomal complex (PoTC) in yeast for the recycling consists of three reactions: release of tRNA, release of mRNA and splitting of ribosomes, catalyzed by eukaryotic elongation factor 3 (eEF3) and ATP. Here, we show that translocation inhibitors cycloheximide and lactimidomycin inhibited all three reactions. Cycloheximide is a non-competitive inhibitor of both eEF3 and ATP. The inhibition was observed regardless of the way PoTC was prepared with either release factors or puromycin. Paromomycin not only inhibited all three reactions but also re-associated yeast ribosomal subunits. On the other hand, sordarin or fusidic acid, when applied together with eEF2/GTP, specifically inhibited ribosome splitting without blocking of tRNA/mRNA release. From these inhibitor studies, we propose that, in accordance with eEF3's known function in elongation, the release of tRNA via exit site occurs first, then mRNA is released, followed by the splitting of ribosomes during the disassembly of post-termination complexes catalyzed by eEF3 and ATP.


Assuntos
Proteínas Fúngicas/metabolismo , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fatores de Alongamento de Peptídeos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Cicloeximida/farmacologia , Ácido Fusídico/farmacologia , Indenos/farmacologia , Macrolídeos/farmacologia , Paromomicina/farmacologia , Fatores de Alongamento de Peptídeos/antagonistas & inibidores , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/farmacologia , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos
5.
Biochim Biophys Acta ; 1802(7-8): 692-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20435138

RESUMO

Mammalian mitochondria synthesize a set of thirteen proteins that are essential for energy generation via oxidative phosphorylation. The genes for all of the factors required for synthesis of the mitochondrially encoded proteins are located in the nuclear genome. A number of disease-causing mutations have been identified in these genes. In this manuscript, we have elucidated the mechanisms of translational failure for two disease states characterized by lethal mutations in mitochondrial elongation factor Ts (EF-Ts(mt)) and elongation factor Tu (EF-Tu(mt)). EF-Tu(mt) delivers the aminoacyl-tRNA (aa-tRNA) to the ribosome during the elongation phase of protein synthesis. EF-Ts(mt) regenerates EF-Tu(mt):GTP from EF-Tu(mt):GDP. A mutation of EF-Ts(mt) (R325W) leads to a two-fold reduction in its ability to stimulate the activity of EF-Tu(mt) in poly(U)-directed polypeptide chain elongation. This loss of activity is caused by a significant reduction in the ability of EF-Ts(mt) R325W to bind EF-Tu(mt), leading to a defect in nucleotide exchange. A mutation of Arg336 to Gln in EF-Tu(mt) causes infantile encephalopathy caused by defects in mitochondrial translation. EF-Tu(mt) R336Q is as active as the wild-type protein in polymerization using Escherichia coli 70S ribosomes and E. coli [(14)C]Phe-tRNA but is inactive in polymerization with mitochondrial [(14)C]Phe-tRNA and mitochondrial 55S ribosomes. The R336Q mutation causes a two-fold decrease in ternary complex formation with E. coli aa-tRNA but completely inactivates EF-Tu(mt) for binding to mitochondrial aa-tRNA. Clearly the R336Q mutation in EF-Tu(mt) has a far more drastic effect on its interaction with mitochondrial aa-tRNAs than bacterial aa-tRNAs.


Assuntos
Genes Letais , Mitocôndrias/metabolismo , Mutação , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/fisiologia , Biossíntese de Proteínas/genética , Substituição de Aminoácidos/fisiologia , Animais , Bovinos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Genes Letais/fisiologia , Mitocôndrias/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Mutação/fisiologia , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/fisiologia , Fatores de Alongamento de Peptídeos/análise , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , RNA de Transferência Aminoácido-Específico/metabolismo , Relação Estrutura-Atividade
6.
Nucleic Acids Res ; 36(20): 6386-95, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18838389

RESUMO

Using full-length cDNA sequences, we compared alternative splicing (AS) in humans and mice. The alignment of the human and mouse genomes showed that 86% of 199 426 total exons in human AS variants were conserved in the mouse genome. Of the 20 392 total human AS variants, however, 59% consisted of all conserved exons. Comparing AS patterns between human and mouse transcripts revealed that only 431 transcripts from 189 loci were perfectly conserved AS variants. To exclude the possibility that the full-length human cDNAs used in the present study, especially those with retained introns, were cloning artefacts or prematurely spliced transcripts, we experimentally validated 34 such cases. Our results indicate that even retained-intron type transcripts are typically expressed in a highly controlled manner and interact with translating ribosomes. We found non-conserved AS exons to be predominantly outside the coding sequences (CDSs). This suggests that non-conserved exons in the CDSs of transcripts cause functional constraint. These findings should enhance our understanding of the relationship between AS and species specificity of human genes.


Assuntos
Processamento Alternativo , DNA Complementar/química , Evolução Molecular , Aminoacil-tRNA Sintetases/genética , Animais , Sequência de Bases , Sequência Conservada , Interpretação Estatística de Dados , Éxons , Genômica , Humanos , Íntrons , Camundongos , Fosfatidilinositol 3-Quinases/genética , RNA Mensageiro/química , Especificidade da Espécie
7.
J Biol Chem ; 282(6): 4076-84, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17130126

RESUMO

The main function of the prokaryotic translation elongation factor Tu (EF-Tu) and its eukaryotic counterpart eEF1A is to deliver aminoacyl-tRNA to the A-site on the ribosome. In addition to this primary function, it has been reported that EF-Tu from various sources has chaperone activity. At present, little information is available about the chaperone activity of mitochondrial EF-Tu. In the present study, we have examined the chaperone function of mammalian mitochondrial EF-Tu (EF-Tumt). We demonstrate that recombinant EF-Tumt prevents thermal aggregation of proteins and enhances protein refolding in vitro and that this EF-Tumt chaperone activity proceeds in a GTP-independent manner. We also demonstrate that, under heat stress, the newly synthesized peptides from the mitochondrial ribosome specifically co-immunoprecipitate with EF-Tumt and are destabilized in EF-Tumt-overexpressing cells. We show that most of the EF-Tumt localizes on the mitochondrial inner membrane where most mitochondrial ribosomes are found. We discuss the possible role of EF-Tumt chaperone activity in protein quality control in mitochondria, with regard to the recently reported in vivo chaperone function of eEF1A.


Assuntos
Proteínas Mitocondriais/fisiologia , Chaperonas Moleculares/fisiologia , Fator Tu de Elongação de Peptídeos/fisiologia , Biossíntese de Proteínas , Animais , Bovinos , Linhagem Celular , Guanosina Trifosfato/fisiologia , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Fator Tu de Elongação de Peptídeos/genética , Peptídeos/genética , Peptídeos/fisiologia , Dobramento de Proteína , Proteínas Recombinantes/genética
8.
Nature ; 430(7000): 700-4, 2004 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15295603

RESUMO

The 3'-terminal CCA nucleotide sequence (positions 74-76) of transfer RNA is essential for amino acid attachment and interaction with the ribosome during protein synthesis. The CCA sequence is synthesized de novo and/or repaired by a template-independent RNA polymerase, 'CCA-adding enzyme', using CTP and ATP as substrates. Despite structural and biochemical studies, the mechanism by which the CCA-adding enzyme synthesizes the defined sequence without a nucleic acid template remains elusive. Here we present the crystal structure of Aquifex aeolicus CCA-adding enzyme, bound to a primer tRNA lacking the terminal adenosine and an incoming ATP analogue, at 2.8 A resolution. The enzyme enfolds the acceptor T helix of the tRNA molecule. In the catalytic pocket, C75 is adjacent to ATP, and their base moieties are stacked. The complementary pocket for recognizing C74-C75 of tRNA forms a 'protein template' for the penultimate two nucleotides, mimicking the nucleotide template used by template-dependent polymerases. These results are supported by systematic analyses of mutants. Our structure represents the 'pre-insertion' stage of selecting the incoming nucleotide and provides the structural basis for the mechanism underlying template-independent RNA polymerization.


Assuntos
Bactérias/enzimologia , Biopolímeros/biossíntese , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/metabolismo , RNA/biossíntese , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias/genética , Sítios de Ligação , Biopolímeros/genética , Biopolímeros/metabolismo , Cristalização , Cristalografia por Raios X , Citidina Trifosfato/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Geobacillus stearothermophilus/enzimologia , Modelos Moleculares , Conformação Proteica , RNA/genética , RNA/metabolismo , Relação Estrutura-Atividade , Moldes Genéticos
9.
Biochemistry ; 43(30): 9743-54, 2004 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-15274629

RESUMO

Human mitochondrial methionyl-tRNA synthetase (human mtMetRS) has been identified from the human EST database. The cDNA encodes a 593 amino acid protein with an 18 amino acid mitochondrial import signal sequence. Sequence analysis indicates that this protein contains the consensus motifs characteristic of a class I aminoacyl-tRNA synthetase but lacks the Zn(2+) binding motif and C-terminal dimerization region found in MetRSs from various organisms. The mature form of human mtMetRS has been cloned and expressed in Escherichia coli. Gel filtration experiments indicate that this protein functions as a monomer with an apparent molecular mass of 67 kDa. The kinetic parameters for activation of methionine have been determined for the purified enzyme. The K(M) and k(cat) for aminoacylation of E. coli initiator tRNA(f)(Met) are reported. The kinetics of aminoacylation of an in vitro transcript of human mitochondrial tRNA(Met) (mtRNA(Met)) have been determined. To address the effects of the modification of mtRNA on recognition of the mitochondrial tRNA by human mtMetRS, the kinetics of aminoacylation of native bovine mtRNA(Met) and of an in vitro transcript of the bovine mtRNA(Met) have also been investigated.


Assuntos
Metionina tRNA Ligase/química , Mitocôndrias/enzimologia , Acilação , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Cátions , Bovinos , Dimerização , Difosfatos/química , Células HL-60 , Humanos , Concentração de Íons de Hidrogênio , Metionina tRNA Ligase/biossíntese , Metionina tRNA Ligase/genética , Metionina tRNA Ligase/isolamento & purificação , Mitocôndrias/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , RNA de Transferência de Metionina/química , Análise de Sequência de Proteína , Soroalbumina Bovina/química , Espermina/química , Aminoacilação de RNA de Transferência
10.
EMBO J ; 22(21): 5918-27, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14592988

RESUMO

CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase], a template-independent RNA polymerase, adds the defined 'cytidine-cytidine-adenosine' sequence onto the 3' end of tRNA. The archaeal CCA-adding enzyme (class I) and eubacterial/eukaryotic CCA-adding enzyme (class II) show little amino acid sequence homology, but catalyze the same reaction in a defined fashion. Here, we present the crystal structures of the class I archaeal CCA-adding enzyme from Archaeoglobus fulgidus, and its complexes with CTP and ATP at 2.0, 2.0 and 2.7 A resolutions, respectively. The geometry of the catalytic carboxylates and the relative positions of CTP and ATP to a single catalytic site are well conserved in both classes of CCA-adding enzymes, whereas the overall architectures, except for the catalytic core, of the class I and class II CCA-adding enzymes are fundamentally different. Furthermore, the recognition mechanisms of substrate nucleotides and tRNA molecules are distinct between these two classes, suggesting that the catalytic domains of class I and class II enzymes share a common origin, and distinct substrate recognition domains have been appended to form the two presently divergent classes.


Assuntos
Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/enzimologia , Archaeoglobus fulgidus/genética , Evolução Molecular , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Cristalografia por Raios X , Citidina Trifosfato/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , RNA Nucleotidiltransferases/química , Homologia de Sequência de Aminoácidos , Eletricidade Estática
11.
J Biol Chem ; 278(46): 45318-24, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12952954

RESUMO

Mitochondrial (mt) biogenesis depends on both the nuclear and mt genomes, and a coordination of these two genetic systems is necessary for proper cell functioning. Little is known about the regulatory mechanisms of mt translation or about the expression of mt translation factors. Here, we studied the expression of mt translation factors during 12-O-tetradecanoyl-1-phorbol-13-acetate (TPA)-induced terminal differentiation of HL-60 cells. For all mt translation factors investigated, mRNA expression was markedly down-regulated in a coordinate and specific manner, whereas mRNA levels for the cytoplasmic translation factors showed only a slight reduction. An actinomycin D chase study and nuclear run-on assay revealed that the TPA-induced decrease in mt elongation factor Tu (EF-Tumt) mRNA mainly results from decreased mRNA stability. Polysome analysis showed that there was no significant translational control of mt translation factor (EF-Tumt, ribosomal proteins L7/L12mt and S12mt) mRNA expression during differentiation. Thus, the decreased protein level of one of these mt translation factors (EF-Tumt) simply reflects its decreased mRNA level. It was also demonstrated by pulse labeling of mt translation products that the down-regulation of mt translational activity is actually associated with down-regulated mt translation factor expression during cellular differentiation. Our results illustrate that the regulatory mechanisms of mt translational activity upon terminal differentiation (in response to the growth arrest) is different to that of the cytoplasmic system, where the control of mRNA translational efficiency of major translation factors is the central mechanism for their down-regulation.


Assuntos
Citoplasma/metabolismo , Regulação para Baixo , Mitocôndrias/efeitos dos fármacos , Acetato de Tetradecanoilforbol , Northern Blotting , Carcinógenos , Diferenciação Celular , Núcleo Celular/metabolismo , Dactinomicina/farmacologia , Células HL-60 , Humanos , Immunoblotting , Mitocôndrias/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA