Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4476, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491435

RESUMO

Supersulphides are inorganic and organic sulphides with sulphur catenation with diverse physiological functions. Their synthesis is mainly mediated by mitochondrial cysteinyl-tRNA synthetase (CARS2) that functions as a principal cysteine persulphide synthase (CPERS). Here, we identify protective functions of supersulphides in viral airway infections (influenza and COVID-19), in aged lungs and in chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF). We develop a method for breath supersulphur-omics and demonstrate that levels of exhaled supersulphides increase in people with COVID-19 infection and in a hamster model of SARS-CoV-2 infection. Lung damage and subsequent lethality that result from oxidative stress and inflammation in mouse models of COPD, IPF, and ageing were mitigated by endogenous supersulphides production by CARS2/CPERS or exogenous administration of the supersulphide donor glutathione trisulphide. We revealed a protective role of supersulphides in airways with various viral or chronic insults and demonstrated the potential of targeting supersulphides in lung disease.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , SARS-CoV-2 , Doença Pulmonar Obstrutiva Crônica/genética , Pulmão , Fibrose Pulmonar Idiopática/genética
2.
Respir Res ; 22(1): 63, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33607992

RESUMO

BACKGROUND: The airway epithelial barrier function is disrupted in the airways of asthmatic patients. Abnormal mitochondrial biogenesis is reportedly involved in the pathogenesis of asthma. However, the role of mitochondrial biogenesis in the airway barrier dysfunction has not been elucidated yet. This study aimed to clarify whether the peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α), a central regulator of mitochondrial biogenesis, is involved in the disruption of the airway barrier function induced by aeroallergens. METHODS: BEAS-2B cells were exposed to house dust mite (HDM) and the expressions of PGC-1α and E-cadherin, a junctional protein, were examined by immunoblotting. The effect of SRT1720, a PGC-1α activator, was investigated by immunoblotting, immunocytochemistry, and measuring the transepithelial electrical resistance (TEER) on the HDM-induced reduction in mitochondrial biogenesis markers and junctional proteins in airway bronchial epithelial cells. Furthermore,the effects of protease activated receptor 2 (PAR2) inhibitor, GB83, Toll-like receptor 4 (TLR4) inhibitor, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS), protease inhibitors including E64 and 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) on the HDM-induced barrier dysfunction were investigated. RESULTS: The amounts of PGC-1α and E-cadherin in the HDM-treated cells were significantly decreased compared to the vehicle-treated cells. SRT1720 restored the expressions of PGC-1α and E-cadherin reduced by HDM in BEAS-2B cells. Treatment with SRT1720 also significantly ameliorated the HDM-induced reduction in TEER. In addition, GB83, LPS-RS, E64 and AEBSF prevented the HDM-induced reduction in the expression of PGC1α and E-cadherin. CONCLUSIONS: The current study demonstrated that HDM disrupted the airway barrier function through the PAR2/TLR4/PGC-1α-dependent pathway. The modulation of this pathway could be a new approach for the treatment of asthma.


Assuntos
Asma/metabolismo , Brônquios/metabolismo , Células Epiteliais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Pyroglyphidae , Mucosa Respiratória/metabolismo , Animais , Asma/patologia , Brônquios/patologia , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Impedância Elétrica , Células Epiteliais/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Respiratória/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA