Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Pathol ; 262(4): 505-516, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38332727

RESUMO

Pulmonary fibrosis, especially idiopathic pulmonary fibrosis (IPF), portends significant morbidity and mortality, and current therapeutic options are suboptimal. We have previously shown that type I collagen signaling through discoidin domain receptor 2 (DDR2), a receptor tyrosine kinase expressed by fibroblasts, is critical for the regulation of fibroblast apoptosis and progressive fibrosis. However, the downstream signaling pathways for DDR2 remain poorly defined and could also be attractive potential targets for therapy. A recent phosphoproteomic approach indicated that PIK3C2α, a poorly studied member of the PI3 kinase family, could be a downstream mediator of DDR2 signaling. We hypothesized that collagen I/DDR2 signaling through PIK3C2α regulates fibroblast activity during progressive fibrosis. To test this hypothesis, we found that primary murine fibroblasts and IPF-derived fibroblasts stimulated with endogenous or exogenous type I collagen led to the formation of a DDR2/PIK3C2α complex, resulting in phosphorylation of PIK3C2α. Fibroblasts treated with an inhibitor of PIK3C2α or with deletion of PIK3C2α had fewer markers of activation after stimulation with TGFß and more apoptosis after stimulation with a Fas-activating antibody. Finally, mice with fibroblast-specific deletion of PIK3C2α had less fibrosis after bleomycin treatment than did littermate control mice with intact expression of PIK3Cα. Collectively, these data support the notion that collagen/DDR2/PIK3C2α signaling is critical for fibroblast function during progressive fibrosis, making this pathway a potential target for antifibrotic therapy. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Receptor com Domínio Discoidina 2 , Fibrose Pulmonar Idiopática , Camundongos , Animais , Receptor com Domínio Discoidina 2/genética , Receptor com Domínio Discoidina 2/metabolismo , Colágeno Tipo I/metabolismo , Fibroblastos/patologia , Colágeno/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Receptores com Domínio Discoidina/metabolismo , Pulmão/patologia
2.
Sci Rep ; 11(1): 5199, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664344

RESUMO

The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) plays a crucial role in angiogenesis at least in part through participating in endocytosis and, thereby, endosomal signaling of several cell surface receptors including VEGF receptor-2 and TGFß receptor in vascular endothelial cells (ECs). The Notch signaling cascade regulates many cellular processes including cell proliferation, cell fate specification and differentiation. In the present study, we explored a role of PI3K-C2α in Delta-like 4 (Dll4)-induced Notch signaling in ECs. We found that knockdown of PI3K-C2α inhibited Dll4-induced generation of the signaling molecule Notch intracellular domain 1 (NICD1) and the expression of Notch1 target genes including HEY1, HEY2 and NOTCH3 in ECs but not in vascular smooth muscle cells. PI3K-C2α knockdown did not inhibit Dll4-induced endocytosis of cell surface Notch1. In contrast, PI3K-C2α knockdown as well as clathrin heavy chain knockdown impaired endocytosis of Notch1-cleaving protease, γ-secretase complex, with the accumulation of Notch1 at the perinuclear endolysosomes. Pharmacological blockage of γ-secretase also induced the intracellular accumulation of Notch1. Taken together, we conclude that PI3K-C2α is required for the clathrin-mediated endocytosis of γ-secretase complex, which allows for the cleavage of endocytosed Notch1 by γ-secretase complex at the endolysosomes to generate NICD1 in ECs.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Neovascularização Fisiológica/genética , Fosfatidilinositol 3-Quinases/genética , Receptor Notch1/genética , Receptor Notch3/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Clatrina/genética , Endocitose/genética , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
3.
J Physiol Sci ; 70(1): 18, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32192434

RESUMO

Class II phosphatidylinositol 3-kinases (PI3K), PI3K-C2α and PI3K-C2ß, are involved in cellular processes including endocytosis, cilia formation and autophagy. However, the role of PI3K-C2α and PI3K-C2ß at the organismal level is not well understood. We found that double knockout (KO) mice with both smooth muscle-specific KO of PI3K-C2α and global PI3K-C2ß KO, but not single KO mice of either PI3K-C2α or PI3K-C2ß, exhibited reductions in arterial blood pressure and substantial attenuation of contractile responses of isolated aortic rings. In wild-type vascular smooth muscle cells, double knockdown of PI3K-C2α and PI3K-C2ß but not single knockdown of either PI3K markedly inhibited contraction with reduced phosphorylation of 20-kDa myosin light chain and MYPT1 and Rho activation, but without inhibition of the intracellular Ca2+ mobilization. These data indicate that PI3K-C2α and PI3K-C2ß play the redundant but essential role for vascular smooth muscle contraction and blood pressure regulation mainly through their involvement in Rho activation.


Assuntos
Cálcio/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Pressão Sanguínea/fisiologia , Células Cultivadas , Classe II de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Isoenzimas , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/enzimologia , Proteínas rho de Ligação ao GTP/genética
4.
Sci Rep ; 9(1): 18329, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797978

RESUMO

Atherosclerosis is the major cause of ischemic coronary heart diseases and characterized by the infiltration of cholesterol-accumulating macrophages in the vascular wall. Although sphingolipids are implicated in atherosclerosis as both membrane components and lipid mediators, the precise role of sphingolipids in atherosclerosis remains elusive. Here, we found that genetic deficiency of sphingosine kinase-2 (SphK2) but not SphK1 aggravates the formation of atherosclerotic lesions in mice with ApoE deficiency. Bone marrow chimaera experiments show the involvement of SphK2 expressed in bone marrow-derived cells. In macrophages, deficiency of SphK2, a major SphK isoform in this cell type, results in increases in cellular sphingosine and ceramides. SphK2-deficient macrophages have increases in lipid droplet-containing autophagosomes and autolysosomes and defective lysosomal degradation of lipid droplets via autophagy with an impaired luminal acidic environment and proteolytic activity in the lysosomes. Transgenic overexpression of SphK1 in SphK2-deficient mice rescued aggravation of atherosclerosis and abnormalities of autophagosomes and lysosomes in macrophages with reductions of sphingosine, suggesting at least partial overlapping actions of two SphKs. Taken together, these results indicate that SphK2 is required for autophagosome- and lysosome-mediated catabolism of intracellular lipid droplets to impede the development of atherosclerosis; therefore, SphK2 may be a novel target for treating atherosclerosis.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Células da Medula Óssea/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Esfingosina/metabolismo
5.
J Clin Invest ; 129(10): 4332-4349, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31335323

RESUMO

Lysophosphatidic acid (LPA) is a potent lipid mediator with various biological functions mediated through six G protein-coupled receptors (GPCRs), LPA1-6. Previous studies have demonstrated that LPA-Gα12/Gα13 signaling plays an important role in embryonic vascular development. However, the responsible LPA receptors and underlying mechanisms are poorly understood. Here, we show a critical role of LPA4 and LPA6 in developmental angiogenesis. In mice, Lpa4;Lpa6 double knockout (DKO) embryos were lethal due to global vascular deficiencies, and endothelial cell (EC)-specific Lpa4;Lpa6 DKO retinas had impaired sprouting angiogenesis. Mechanistically, LPA activated the transcriptional regulators YAP and TAZ through LPA4/LPA6-mediated Gα12/Gα13-Rho-ROCK signaling in ECs. YAP/TAZ knockdown increased ß-catenin- and Notch intracellular domain (NICD)-mediated endothelial expression of the Notch ligand delta-like 4 (DLL4). Fibrin gel sprouting assay revealed that LPA4/LPA6, Gα12/Gα13, or YAP/TAZ knockdown consistently blocked EC sprouting, which was rescued by a Notch inhibitor. Of note, the inhibition of Notch signaling also ameliorated impaired retinal angiogenesis in EC-specific Lpa4;Lpa6 DKO mice. Overall, these results suggest that the Gα12/Gα13-coupled receptors LPA4 and LPA6 synergistically regulate endothelial Dll4 expression through YAP/TAZ activation. This could in part account for the mechanism of YAP/TAZ-mediated developmental angiogenesis. Our findings provide a novel insight into the biology of GPCR-activated YAP/TAZ.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neovascularização Fisiológica , Transativadores/metabolismo , Animais , Células Endoteliais/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Domínios Proteicos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Notch/metabolismo , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2/metabolismo , Retina/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP , beta Catenina/metabolismo
6.
J Physiol Sci ; 69(2): 263-280, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30374841

RESUMO

Pinocytosis is an important fundamental cellular process that is used by the cell to transport fluid and solutes. Phosphoinositide 3-kinases (PI3Ks) regulate a diverse array of dynamic membrane events. However, it is not well-understood which PI3K isoforms are involved in specific mechanisms of pinocytosis. We performed knockdown studies of endogenous PI3K isoforms and clathrin heavy chain (CHC) mediated by small interfering RNA (siRNA). The results demonstrated that the class II PI3K PI3K-C2α and PI3K-C2ß, but not the class I or III PI3K, were required for pinocytosis, based on an evaluation of fluorescein-5-isothiocyanate (FITC)-dextran uptake in endothelial cells. Pinocytosis was partially dependent on both clathrin and dynamin, and both PI3K-C2α and PI3K-C2ß were required for clathrin-mediated-but not clathrin-non-mediated-FITC-dextran uptake at the step leading up to its delivery to early endosomes. Both PI3K-C2α and PI3K-C2ß were co-localized with clathrin-coated pits and vesicles. However, PI3K-C2ß, but not PI3K-C2α, was highly co-localized with actin filament-associated clathrin-coated structures and required for actin filament formation at the clathrin-coated structures. These results indicate that PI3K-C2α and PI3K-C2ß play differential, indispensable roles in clathrin-mediated pinocytosis.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Clatrina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Pinocitose/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , RNA Interferente Pequeno/metabolismo
7.
Endocrinology ; 160(1): 235-248, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476019

RESUMO

Class II phosphoinositide 3-kinases (PI3Ks), PI3K-C2α and PI3K-C2ß, are highly homologous and distinct from class I and class III PI3Ks in catalytic products and domain structures. In contrast to class I and class III PI3Ks, physiological roles of PI3K-C2α and PI3K-C2ß are not fully understood. Because we previously demonstrated that PI3K-C2α is involved in vascular smooth muscle contraction, we studied the phenotypes of smooth muscle-specific knockout (KO) mice of PI3K-C2α and PI3K-C2ß. The pup numbers born from single PI3K-C2α-KO and single PI3K-C2ß-KO mothers were similar to those of control mothers, but those from double KO (DKO) mothers were smaller compared with control mice. However, the number of intrauterine fetuses in pregnant DKO mothers was similar to that in control mice. Both spontaneous and oxytocin-induced contraction of isolated uterine smooth muscle (USM) strips was diminished in DKO mice but not in either of the single KO mice, compared with control mice. Furthermore, contraction of USM of DKO mice was less sensitive to a Rho kinase inhibitor. Mechanistically, the extent of oxytocin-induced myosin light chain phosphorylation was greatly reduced in USM from DKO mice compared with control mice. The oxytocin-induced rise in the intracellular Ca2+ concentration in USM was similar in DKO and control mice. However, Rho activation in the intracellular compartment was substantially attenuated in DKO mice compared with control mice, as evaluated by fluorescence resonance energy transfer imaging technique. These data indicate that both PI3K-C2α and PI3K-C2ß are required for normal USM contraction and parturition mainly through their involvement in Rho activation.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Músculo Liso Vascular/enzimologia , Parto , Fosfatidilinositol 3-Quinases/metabolismo , Contração Uterina , Útero/enzimologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Classe II de Fosfatidilinositol 3-Quinases/genética , Feminino , Camundongos , Camundongos Knockout , Contração Muscular , Músculo Liso Vascular/fisiologia , Cadeias Leves de Miosina , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Útero/fisiologia , Proteína rhoA de Ligação ao GTP/genética
8.
PLoS One ; 13(5): e0197604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782549

RESUMO

Idiopathic pulmonary fibrosis is a devastating disease with poor prognosis. The pathogenic role of the lysophospholipid mediator sphingosine-1-phosphate and its receptor S1PR2 in lung fibrosis is unknown. We show here that genetic deletion of S1pr2 strikingly attenuated lung fibrosis induced by repeated injections of bleomycin in mice. We observed by using S1pr2LacZ/+ mice that S1PR2 was expressed in alveolar macrophages, vascular endothelial cells and alveolar epithelial cells in the lung and that S1PR2-expressing cells accumulated in the fibrotic legions. Bone marrow chimera experiments suggested that S1PR2 in bone marrow-derived cells contributes to the development of lung fibrosis. Depletion of macrophages greatly attenuated lung fibrosis. Bleomycin administration stimulated the mRNA expression of the profibrotic cytokines IL-13 and IL-4 and the M2 markers including arginase 1, Fizz1/Retnla, Ccl17 and Ccl24 in cells collected from broncho-alveolar lavage fluids (BALF), and S1pr2 deletion markedly diminished the stimulated expression of these genes. BALF cells from bleomycin-administered wild-type mice showed a marked increase in phosphorylation of STAT6, a transcription factor which is activated downstream of IL-13, compared with saline-administered wild-type mice. Interestingly, in bleomycin-administered S1pr2-/- mice, STAT6 phosphorylation in BALF cells was substantially diminished compared with wild-type mice. Finally, pharmacological S1PR2 blockade in S1pr2+/+ mice alleviated bleomycin-induced lung fibrosis. Thus, S1PR2 facilitates lung fibrosis through the mechanisms involving augmentation of IL-13 expression and its signaling in BALF cells, and represents a novel target for treating lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/etiologia , Interleucina-13/metabolismo , Macrófagos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Bleomicina/toxicidade , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Interleucina-13/genética , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/deficiência , Receptores de Lisoesfingolipídeo/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato , Quimeras de Transplante/genética , Quimeras de Transplante/metabolismo , Regulação para Cima
9.
Eur Radiol Exp ; 2(1): 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29708213

RESUMO

BACKGROUND: We analysed the haemodynamics of indocyanine green (ICG) in mouse organs and tumours and evaluated responses to anti-angiogenic agents in an allograft tumour mouse model by photoacoustic imaging. METHODS: Thirty-six male mice (aged 10-14 weeks; body weight 20-25 g) were used. Real-time photoacoustic imaging of organs and tumours after intravenous injection of ICG was conducted in mice until 10 min after ICG injection. ICG distribution in tumour tissues was assessed by immunohistochemical staining and observation of ICG-derived fluorescence. Vascular permeability changes induced by the vascular endothelial growth factor (VEGF)-blocking agent VEGF-trap on tumour photoacoustic signals were studied. RESULTS: The photoacoustic signals in salivary glands and tumours after intravenous injection of iCG (0.604 ± 0.011 and 0.994 ± 0.175 [mean ± standard deviation], respectively) were significantly increased compared with those in the liver, kidney, and great vessel (0.234 ± 0.043, 0.204 ± 0.058 and 0.127 ± 0.040, respectively; p < 0.010). In tumours, the photoacoustic signal increased within 30 s after ICG injection in a dose-dependent manner (r2 = 0.899) and then decreased gradually. ICG was found to extravasate in tumour tissues. In VEGF-trap-treated mice, the photoacoustic signal in the tumour decreased at the early phase before inhibition of tumour growth was detected (0.297 ± 0.052 vs 1.011 ± 0.170 in the control; p < 0.001). CONCLUSIONS: Photoacoustic imaging with ICG administration demonstrated extravasation of ICG in mouse organs and tumours, indicating the potential for early detection of changes in vascular permeability during cancer therapy.

10.
Sci Rep ; 7(1): 16978, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208982

RESUMO

Sphingosine-1-phospate is a potent bioactive lipid metabolite that regulates cancer progression. Because sphingosine kinase 1 and sphingosine kinase 2 (SPHK 1/2) are both essential for sphingosine-1-phospate production, they could be a therapeutic target in various cancers. Peretinoin, an acyclic retinoid, inhibits post-therapeutic recurrence of hepatocellular carcinoma via unclear mechanisms. In this study, we assessed effects of peretinoin on SPHK expression and liver cancer development in vitro and in vivo. We examined effects of peretinoin on expression, enzymatic and promoter activity of SPHK1 in a human hepatoma cell line, Huh-7. We also investigated effects of SPHK1 on hepatocarcinogenesis induced by diethylnitrosamine using SPHK1 knockout mice. Peretinoin treatment of Huh-7 cells reduced mRNA levels, protein expression and enzymatic activity of SPHK1. Peretinoin reduced SPHK1 promoter activity; this effect of peretinoin was blocked by overexpression of Sp1, a transcription factor. Deletion of all Sp1 binding sites within the SPHK1 promoter region abolished SPHK1 promoter activity, suggesting that peretinoin reduced mRNA levels of SPHK1 via Sp1. Additionally, diethylnitrosamine-induced hepatoma was fewer and less frequent in SPHK1 knockout compared to wild-type mice. Our data showed crucial roles of SPHK1 in hepatocarcinogenesis and suggests that peretinoin prevents hepatocarcinogenesis by suppressing mRNA levels of SPHK1.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Retinoides/farmacologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Dietilnitrosamina/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/enzimologia , Hepatite C/genética , Humanos , Fígado/metabolismo , Cirrose Hepática/enzimologia , Cirrose Hepática/genética , Cirrose Hepática/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Camundongos Knockout , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
11.
PLoS One ; 12(8): e0182329, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771545

RESUMO

BACKGROUND: Cardiac fibroblasts, together with cardiomyocytes, occupy the majority of cells in the myocardium and are involved in myocardial remodeling. The lysophospholipid mediator sphigosine-1-phosphate (S1P) regulates functions of cardiovascular cells through multiple receptors including S1PR1-S1PR3. S1PR1 but not other S1P receptors was upregulated in angiotensin II-induced hypertrophic hearts. Therefore, we investigated a role of S1PR1 in fibroblasts for cardiac remodeling by employing transgenic mice that overexpressed S1PR1 under the control of α-smooth muscle actin promoter. In S1PR1-transgenic mouse heart, fibroblasts and/or myofibroblasts were hyperplastic, and those cells as well as vascular smooth muscle cells overexpressed S1PR1. Transgenic mice developed bi-ventricular hypertrophy by 12-week-old and diffuse interstitial fibrosis by 24-week-old without hemodynamic stress. Cardiac remodeling in transgenic mice was associated with greater ERK phosphorylation, upregulation of fetal genes, and systolic dysfunction. Transgenic mouse heart showed increased mRNA expression of angiotensin-converting enzyme and interleukin-6 (IL-6). Isolated fibroblasts from transgenic mice exhibited enhanced generation of angiotensin II, which in turn stimulated IL-6 release. Either an AT1 blocker or angiotensin-converting enzyme inhibitor prevented development of cardiac hypertrophy and fibrosis, systolic dysfunction and increased IL-6 expression in transgenic mice. Finally, administration of anti-IL-6 antibody abolished an increase in tyrosine phosphorylation of STAT3, a major signaling molecule downstream of IL-6, in the transgenic mouse heart and prevented development of cardiac hypertrophy in transgenic mice. These results demonstrate a promoting role of S1PR1 in cardiac fibroblasts for cardiac remodeling, in which angiotensin II-AT1 and IL-6 are involved.


Assuntos
Angiotensina II/metabolismo , Interleucina-6/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Angiotensina II/análise , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Compostos de Bifenilo , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ventrículos do Coração/diagnóstico por imagem , Humanos , Interleucina-6/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fosforilação/efeitos dos fármacos , Plasmídeos/genética , Plasmídeos/metabolismo , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais/efeitos dos fármacos , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico
12.
PLoS Biol ; 15(3): e2000949, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248965

RESUMO

During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches.


Assuntos
Linhagem da Célula , Lisofosfolipídeos/metabolismo , Pâncreas/citologia , Transdução de Sinais , Esfingosina/análogos & derivados , Células Acinares/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Padronização Corporal , Proteínas de Ciclo Celular , Diferenciação Celular , Sobrevivência Celular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Modelos Biológicos , Fosfoproteínas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Subunidades Proteicas/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores Notch/metabolismo , Esfingosina/metabolismo , Células-Tronco/citologia , Proteínas de Sinalização YAP
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 47(5): 714-717, 2016 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-28598085

RESUMO

OBJECTIVES: To determine the effect of sphingosine-1-phosphate receptor 2 (S1PR2) on vascular permeability in mice. METHODS: Acute lung injury models of mice were constructed with intra-tracheal administration of lipopolysaccharide (LPS) and compared with the controls with intra-tracheal administration of saline. The effect of S1PR2 on vascular permeability was observed by detecting leakage of Evans blue into lung tissues, pulmonary vascular leakage of fluorescein isothiocyanate (FITC)-dextran, and the wet/dry mass ratio of lungs. The effect of vascular endothelial growth factor (VEGF) on vascular endothelial permeability was detected by Miles analysis. RESULTS: LPS injections induced significant Evans blue leakage, FITC-dextran pulmonary vascular leakage and pulmonary edema, which appeared to be more serious in S1PR2-deleted mice compared with those in wild-type mice. LPS enhanced Evans blue leakage associated with VEGF in a dose-dependent way in both S1PR2-deleted mice and wild type mice. But the vascular permeability response in subcutaneous tissues induced by VEGF was higher in S1PR2-deleted mice than that in wild-type mice. CONCLUSIONS: S1PR2 is involved in endothelial cell barrier protections, which inhibits vascular permeability.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Permeabilidade Capilar , Células Endoteliais/citologia , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Camundongos , Receptores de Esfingosina-1-Fosfato , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
J Biol Chem ; 290(10): 6086-105, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25614622

RESUMO

We have recently demonstrated that the PI3K class II-α isoform (PI3K-C2α), which generates phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphates, plays crucial roles in angiogenesis, by analyzing PI3K-C2α knock-out mice. The PI3K-C2α actions are mediated at least in part through its participation in the internalization of VEGF receptor-2 and sphingosine-1-phosphate receptor S1P1 and thereby their signaling on endosomes. TGFß, which is also an essential angiogenic factor, signals via the serine/threonine kinase receptor complex to induce phosphorylation of Smad2 and Smad3 (Smad2/3). SARA (Smad anchor for receptor activation) protein, which is localized in early endosomes through its FYVE domain, is required for Smad2/3 signaling. In the present study, we showed that PI3K-C2α knockdown nearly completely abolished TGFß1-induced phosphorylation and nuclear translocation of Smad2/3 in vascular endothelial cells (ECs). PI3K-C2α was necessary for TGFß-induced increase in phosphatidylinositol 3,4-bisphosphates in the plasma membrane and TGFß receptor internalization into the SARA-containing early endosomes, but not for phosphatidylinositol 3-phosphate enrichment or localization of SARA in the early endosomes. PI3K-C2α was also required for TGFß receptor-mediated formation of SARA-Smad2/3 complex. Inhibition of dynamin, which is required for the clathrin-dependent receptor endocytosis, suppressed both TGFß receptor internalization and Smad2/3 phosphorylation. TGFß1 stimulated Smad-dependent VEGF-A expression, VEGF receptor-mediated EC migration, and capillary-like tube formation, which were all abolished by either PI3K-C2α knockdown or a dynamin inhibitor. Finally, TGFß1-induced microvessel formation in Matrigel plugs was greatly attenuated in EC-specific PI3K-C2α-deleted mice. These observations indicate that PI3K-C2α plays the pivotal role in TGFß receptor endocytosis and thereby Smad2/3 signaling, participating in angiogenic actions of TGFß.


Assuntos
Endocitose/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfatidilinositol 3-Quinases/genética , Serina Endopeptidases/genética , Fator de Crescimento Transformador beta1/genética , Animais , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Camundongos , Camundongos Knockout , Serina Endopeptidases/biossíntese , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Pharmacol Res Perspect ; 2(5): e00068, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25505610

RESUMO

COA-Cl (2Cl-C.OXT-A) is a recently developed adenosine-like nucleic acid analog that promotes angiogenesis via the mitogen-activated protein (MAP) kinases ERK1/2. Endothelial S1P1 receptor plays indispensable roles in developmental angiogenesis. In this study, we examined the functions of S1P1 in COA-Cl-induced angiogenic responses. Antagonists for S1P1, W146, and VPC23019, substantially but still partly inhibited the effects of COA-Cl with regard to ERK1/2 activation and tube formation in cultured human umbilical vein endothelial cells (HUVEC). Antagonists for adenosine A1 receptor and purinergic P2Y1 receptor were without effect. Genetic knockdown of S1P1 with siRNA, but not that of S1P3, attenuated COA-Cl-elicited ERK1/2 responses. The signaling properties of COA-Cl showed significant similarities to those of sphingosine 1-phosphate, an endogenous S1P1 ligand, in that both induced responses sensitive to pertussis toxin (Gα i/o inhibitor), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), (calcium chelator), and PP2 (c-Src tyrosine kinase inhibitor). COA-Cl elevated intracellular Ca(2+) concentration and induced tyrosine phosphorylation of p130Cas, a substrate of c-Src, in HUVEC. COA-Cl displaced [(3)H]S1P in a radioligand-binding competition assay in chem-1 cells overexpressing S1P1. However, COA-Cl activated ERK1/2 in CHO-K1 cells that lack functional S1P1 receptor, suggesting the presence of additional yet-to-be-defined COA-Cl target in these cells. The results thus suggest the major contribution of S1P1 in the angiogenic effects of COA-Cl. However, other mechanism such as that seen in CHO-K1 cells may also be partly involved. Collectively, these findings may lead to refinement of the design of this nucleic acid analog and ultimately to development of small molecule-based therapeutic angiogenesis.

16.
Diabetologia ; 57(9): 1968-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24989996

RESUMO

AIMS/HYPOTHESIS: Impaired angiogenesis induced by vascular endothelial growth factor (VEGF) resistance is a hallmark of vascular complications in type 2 diabetes; however, its molecular mechanism is not fully understood. We have previously identified selenoprotein P (SeP, encoded by the SEPP1 gene in humans) as a liver-derived secretory protein that induces insulin resistance. Levels of serum SeP and hepatic expression of SEPP1 are elevated in type 2 diabetes. Here, we investigated the effects of SeP on VEGF signalling and angiogenesis. METHODS: We assessed the action of glucose on Sepp1 expression in cultured hepatocytes. We examined the actions of SeP on VEGF signalling and VEGF-induced angiogenesis in HUVECs. We assessed wound healing in mice with hepatic SeP overexpression or SeP deletion. The blood flow recovery after ischaemia was also examined by using hindlimb ischaemia model with Sepp1-heterozygous-knockout mice. RESULTS: Treatment with glucose increased gene expression and transcriptional activity for Sepp1 in H4IIEC hepatocytes. Physiological concentrations of SeP inhibited VEGF-stimulated cell proliferation, tubule formation and migration in HUVECs. SeP suppressed VEGF-induced reactive oxygen species (ROS) generation and phosphorylation of VEGF receptor 2 (VEGFR2) and extracellular signal-regulated kinase 1/2 (ERK1/2) in HUVECs. Wound closure was impaired in the mice overexpressing Sepp1, whereas it was improved in SeP (-/-)mice. SeP (+/-)mice showed an increase in blood flow recovery and vascular endothelial cells after hindlimb ischaemia. CONCLUSIONS/INTERPRETATION: The hepatokine SeP may be a novel therapeutic target for impaired angiogenesis in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Selenoproteína P/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Hepatócitos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Camundongos , Camundongos Knockout , Camundongos Mutantes , Regiões Promotoras Genéticas/genética , Selenoproteína P/genética , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização/genética , Cicatrização/fisiologia
18.
J Allergy Clin Immunol ; 132(5): 1205-1214.e9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24021572

RESUMO

BACKGROUND: Sphingosine-1-phosphate receptor 2 (S1P(2)) is expressed in vascular endothelial cells (ECs). However, the role of S1P(2) in vascular barrier integrity and anaphylaxis is not well understood. Endothelial nitric oxide synthase (eNOS) generates nitric oxide to mediate vascular leakage, compromising survival in patients with anaphylaxis. We recently observed that endothelial S1P(2) inhibits Akt, an activating kinase of eNOS. OBJECTIVE: We tested the hypothesis that endothelial S1P(2) might suppress eNOS, exerting a protective effect against endothelial barrier disruption and anaphylaxis. METHODS: Mice deficient in S1P(2) and eNOS underwent antigen challenge or platelet-activating factor (PAF) injection. Analyses were performed to examine vascular permeability and the underlying mechanisms. RESULTS: S1pr2 deletion augmented vascular leakage and lethality after either antigen challenge or PAF injection. PAF injection induced activation of Akt and eNOS in the aortas and lungs of S1pr2-null mice, which were augmented compared with values seen in wild-type mice. Consistently, PAF-induced increase in cyclic guanosine monophosphate levels in the aorta was enhanced in S1pr-null mice. Genetic Nos3 deletion or pharmacologic eNOS blockade protected S1pr2-null mice from aggravation of barrier disruption after antigen challenge and PAF injection. ECs isolated from S1pr2-null mice exhibited greater stimulation of Akt and eNOS, with enhanced nitric oxide production in response to sphingosine-1-phosphate or PAF, compared with that seen in wild-type ECs. Moreover, S1pr2-deficient ECs showed more severe disassembly of adherens junctions with augmented S-nitrosylation of ß-catenin in response to PAF, which was restored by pharmacologic eNOS blockade. CONCLUSION: S1P(2) diminishes harmful robust eNOS stimulation and thereby attenuates vascular barrier disruption, suggesting potential usefulness of S1P(2) agonists as novel therapeutic agents for anaphylaxis.


Assuntos
Anafilaxia/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/metabolismo , Junções Aderentes/metabolismo , Anafilaxia/genética , Anafilaxia/mortalidade , Animais , Aorta/imunologia , Aorta/metabolismo , Permeabilidade Capilar/genética , Permeabilidade Capilar/imunologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ativação Enzimática , Deleção de Genes , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , beta Catenina/metabolismo
19.
Clin Exp Nephrol ; 17(6): 793-804, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23564379

RESUMO

BACKGROUND: The migration and activation of circulating profibrotic cells including fibrocytes by the action of the chemokine/chemokine receptor system has been implicated in pathological fibrogenesis. In the present study, the involvement of collagen 1 (Col1)-producing cells, CD45-positive/collagen-1-positive (CD45(+)/Col1(+)) cells originally named as fibrocytes via CC chemokine receptor 2 (CCR2), a cognate receptor of CCL2/monocyte chemoattractant protein, was examined in diabetic conditions. METHODS: Human CD45(+)/Col1(+) cells originating from the peripheral blood of healthy volunteers were incubated with high concentrations of D-glucose or D-mannitol as an osmotic control for 12, 24 or 48 h. In addition, these cells were preincubated with CCL2 under high glucose concentrations. We also examined the effects of the inhibitors of glucose transporters (GLUTs), reactive oxygen species or CCR2 on the expression of transforming growth factor beta1 (TGF-ß1), pro-α1 chain of Col1 (COL1A1), and CCL2. RESULTS: Stimulation of CD45(+)/Col1(+) cells with high glucose concentrations increased the mRNA and protein levels of TGF-ß1 and CCL2 and those of pro-COL1A1, and this effect was mediated in part by increased osmolality. Preincubation of the cells with cytochalasin B (a GLUT inhibitor) or N-acetylcysteine (an antioxidant) blocked the stimulatory effect of high glucose concentrations on these profibrotic molecules. In addition, preincubation of the cells with CCL2 enhanced the high glucose-induced upregulation of TGF-ß1, pro-COL1A1 and CCL2 and migration of the cells, and this effect was partly inhibited by treatment with CCR2 inhibitors. CONCLUSION: These results suggest that CD45(+)/Col1(+) cells may be directly involved, in part through CCL2/CCR2 signaling, in the fibrotic process under diabetic conditions.


Assuntos
Quimiocina CCL2/biossíntese , Colágeno Tipo I/biossíntese , Glucose/administração & dosagem , Rim/patologia , Monócitos/metabolismo , Receptores CCR2/fisiologia , Fator de Crescimento Transformador beta1/biossíntese , Acetilcisteína/farmacologia , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/fisiologia , Citocalasina B/farmacologia , Fibrose/etiologia , Proteínas Facilitadoras de Transporte de Glucose/biossíntese , Humanos , Antígenos Comuns de Leucócito/imunologia , Monócitos/efeitos dos fármacos , Receptores CCR2/antagonistas & inibidores
20.
J Biol Chem ; 288(4): 2325-39, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23192342

RESUMO

The phosphatidylinositol (PtdIns) 3-kinase (PI3K) family regulates diverse cellular processes, including cell proliferation, migration, and vesicular trafficking, through catalyzing 3'-phosphorylation of phosphoinositides. In contrast to class I PI3Ks, including p110α and p110ß, functional roles of class II PI3Ks, comprising PI3K-C2α, PI3K-C2ß, and PI3K-C2γ, are little understood. The lysophospholipid mediator sphingosine 1-phosphate (S1P) plays the important roles in regulating vascular functions, including vascular formation and barrier integrity, via the G-protein-coupled receptors S1P(1-3). We studied the roles of PI3K-C2α in S1P-induced endothelial cell (EC) migration and tube formation. S1P stimulated cell migration and activation of Akt, ERK, and Rac1, the latter of which acts as a signaling molecule essential for cell migration and tube formation, via S1P(1) in ECs. Knockdown of either PI3K-C2α or class I p110ß markedly inhibited S1P-induced migration, lamellipodium formation, and tube formation, whereas that of p110α or Vps34 did not. Only p110ß was necessary for S1P-iduced Akt activation, but both PI3K-C2α and p110ß were required for Rac1 activation. FRET imaging showed that S1P induced Rac1 activation in both the plasma membrane and PtdIns 3-phosphate (PtdIns(3)P)-enriched endosomes. Knockdown of PI3K-C2α but not p110ß markedly reduced PtdIns(3)P-enriched endosomes and suppressed endosomal Rac1 activation. Also, knockdown of PI3K-C2α but not p110ß suppressed S1P-induced S1P(1) internalization into PtdIns(3)P-enriched endosomes. Finally, pharmacological inhibition of endocytosis suppressed S1P-induced S1P(1) internalization, Rac1 activation, migration, and tube formation. These observations indicate that PI3K-C2α plays the crucial role in S1P(1) internalization into the intracellular vesicular compartment, Rac1 activation on endosomes, and thereby migration through regulating vesicular trafficking in ECs.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases/fisiologia , Regulação Enzimológica da Expressão Gênica , Receptores de Lisoesfingolipídeo/genética , Movimento Celular , Células Cultivadas , Classe II de Fosfatidilinositol 3-Quinases/genética , Endocitose , Endossomos/metabolismo , Células Endoteliais/citologia , Transferência Ressonante de Energia de Fluorescência , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisofosfolipídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transfecção , Proteínas rac de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA