Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biochem J ; 481(6): 437-460, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38372302

RESUMO

Catalytic poly(ADP-ribose) production by PARP1 is allosterically activated through interaction with DNA breaks, and PARP inhibitor compounds have the potential to influence PARP1 allostery in addition to preventing catalytic activity. Using the benzimidazole-4-carboxamide pharmacophore present in the first generation PARP1 inhibitor veliparib, a series of 11 derivatives was designed, synthesized, and evaluated as allosteric PARP1 inhibitors, with the premise that bulky substituents would engage the regulatory helical domain (HD) and thereby promote PARP1 retention on DNA breaks. We found that core scaffold modifications could indeed increase PARP1 affinity for DNA; however, the bulk of the modification alone was insufficient to trigger PARP1 allosteric retention on DNA breaks. Rather, compounds eliciting PARP1 retention on DNA breaks were found to be rigidly held in a position that interferes with a specific region of the HD domain, a region that is not targeted by current clinical PARP inhibitors. Collectively, these compounds highlight a unique way to trigger PARP1 retention on DNA breaks and open a path to unveil the pharmacological benefits of such inhibitors with novel properties.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Benzimidazóis/farmacologia , Reparo do DNA , Quebras de DNA , Dano ao DNA
2.
Bioorg Med Chem Lett ; 88: 129288, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094724

RESUMO

NIMA Related Kinase 2 (Nek2) kinase is an attractive target for the development of therapeutic agents for several types of highly invasive cancers. Despite this, no small molecule inhibitor has advanced to the late clinical stages thus far. In this work, we have identified a novel spirocyclic inhibitor (V8) of Nek2 kinase, utilizing a high-throughput virtual screening (HTVS) approach. Using recombinant Nek2 enzyme assays, we show that V8 can inhibit Nek2 kinase activity (IC50 = 2.4 ± 0.2 µM) by binding to the enzyme's ATP pocket. The inhibition is selective, reversible and is not time dependent. To understand the key chemotype features responsible for Nek2 inhibition, a detailed structure-activity relationships (SAR) was performed. Using molecular models of the energy-minimized structures of Nek2-inhibitory complexes, we identify key hydrogen-bonding interactions, including two from the hinge-binding region, likely responsible for the observed affinity. Finally, using cell-based studies, we show that V8 attenuates (a) pAkt/PI3 Kinase signaling in a dose-dependent manner, and (b) proliferative and migratory phenotypes of highly aggressive human MDA-MB-231 breast and A549 lung cancer cell lines. Thus, V8 is an important novel lead compound for the development of highly potent and selective Nek2 inhibitory agents.


Assuntos
Quinases Relacionadas a NIMA , Humanos , Linhagem Celular Tumoral , Neoplasias Pulmonares , Modelos Moleculares , Quinases Relacionadas a NIMA/antagonistas & inibidores , Fosforilação , Relação Estrutura-Atividade
3.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056661

RESUMO

Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.


Assuntos
Doenças Ósseas/patologia , Inibidores Enzimáticos/farmacologia , Doenças do Sistema Imunitário/patologia , Nefropatias/patologia , Malária/patologia , Quinases Relacionadas a NIMA/antagonistas & inibidores , Neoplasias/patologia , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/enzimologia , Resistência a Medicamentos , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/enzimologia , Nefropatias/tratamento farmacológico , Nefropatias/enzimologia , Malária/tratamento farmacológico , Malária/enzimologia , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
4.
Nat Cell Biol ; 24(1): 62-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013556

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitors elicit antitumour activity in homologous recombination-defective cancers by trapping PARP1 in a chromatin-bound state. How cells process trapped PARP1 remains unclear. Using wild-type and a trapping-deficient PARP1 mutant combined with rapid immunoprecipitation mass spectrometry of endogenous proteins and Apex2 proximity labelling, we delineated mass spectrometry-based interactomes of trapped and non-trapped PARP1. These analyses identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase/segregase. We found that following trapping, PARP1 is SUMOylated by PIAS4 and subsequently ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, events that promote recruitment of p97 and removal of trapped PARP1 from chromatin. Small-molecule p97-complex inhibitors, including a metabolite of the clinically used drug disulfiram (CuET), prolonged PARP1 trapping and enhanced PARP inhibitor-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 and the response of tumour cells to PARP inhibitors.


Assuntos
Cromatina/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína com Valosina/metabolismo , Linhagem Celular Tumoral , Dissulfiram/análogos & derivados , Dissulfiram/farmacologia , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , Ubiquitinação
6.
Mol Med ; 27(1): 79, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271850

RESUMO

BACKGROUND: High mobility group box 1 protein (HMGB1) is an alarmin following its release by immune cells upon cellular activation or stress. High levels of extracellular HMGB1 play a critical role in impairing the clearance of invading pulmonary pathogens and dying neutrophils in the injured lungs of cystic fibrosis (CF) and acute respiratory distress syndrome (ARDS). A heparin derivative, 2-O, 3-O desulfated heparin (ODSH), has been shown to inhibit HMGB1 release from a macrophage cell line and is efficacious in increasing bacterial clearance in a mouse model of pneumonia. Thus, we hypothesized that ODSH can attenuate the bacterial burden and inflammatory lung injury in CF and we conducted experiments to determine the underlying mechanisms. METHODS: We determined the effects of ODSH on lung injury produced by Pseudomonas aeruginosa (PA) infection in CF mice with the transmembrane conductance regulator gene knockout (CFTR-/-). Mice were given ODSH or normal saline intraperitoneally, followed by the determination of the bacterial load and lung injury in the airways and lung tissues. ODSH binding to HMGB1 was determined using surface plasmon resonance and in silico docking analysis of the interaction of the pentasaccharide form of ODSH with HMGB1. RESULTS: CF mice given 25 mg/kg i.p. of ODSH had significantly lower PA-induced lung injury compared to mice given vehicle alone. The CF mice infected with PA had decreased levels of nitric oxide (NO), increased levels of airway HMGB1 and HMGB1-impaired macrophage phagocytic function. ODSH partially attenuated the PA-induced alteration in the levels of NO and airway HMGB1 in CF mice. In addition, ODSH reversed HMGB1-impaired macrophage phagocytic function. These effects of ODSH subsequently decreased the bacterial burden in the CF lungs. In a surface plasmon resonance assay, ODSH interacted with HMGB1 with high affinity (KD = 3.89 × 10-8 M) and induced conformational changes that may decrease HMGB1's binding to its membrane receptors, thus attenuating HMGB1-induced macrophage dysfunction. CONCLUSIONS: The results suggest that ODSH can significantly decrease bacterial infection-induced lung injury in CF mice by decreasing both HMGB1-mediated impairment of macrophage function and the interaction of HMGB1 with membrane receptors. Thus, ODSH could represent a novel approach for treating CF and ARDS patients that have HMGB1-mediated lung injury.


Assuntos
Fibrose Cística/complicações , Fibrose Cística/metabolismo , Proteína HMGB1/genética , Heparina/análogos & derivados , Macrófagos/imunologia , Macrófagos/metabolismo , Pneumonia Bacteriana/etiologia , Pneumonia Bacteriana/metabolismo , Animais , Carga Bacteriana , Biomarcadores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Heparina/química , Heparina/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Óxido Nítrico/metabolismo , Fagocitose/imunologia , Pneumonia Bacteriana/patologia , Ligação Proteica , Células RAW 264.7 , Relação Estrutura-Atividade
7.
Expert Opin Ther Pat ; 31(7): 609-623, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33554679

RESUMO

INTRODUCTION: Discovery of small molecules that impede the activity of single-strand DNA repair enzyme, PARP1, has led to four marketed drugs for the treatment of advanced-stage cancers. Hence, there is a renewed enthusiasm in the PARP inhibitor discovery arena. To reduce nonspecific interactions or potential toxicities, and to understand the role of other minimally explored PARP enzymes, exciting new findings have emerged toward the development of selective inhibitors and targeted chemical biology probes. Importantly, the conventional PARP inhibitor design has evolved in a way that could potentially lead to multienzyme-targeting - a polypharmacological approach against aggressive cancers. AREAS COVERED: This review comprises recent progress made in the development of PARP inhibitors, primarily focused on human cancers. Discovery of novel PARP inhibitors with pan, selective, and multi-target inhibition using in vitro and in vivo cancer models is summarized and critically evaluated. Emphasis is given to patents published during 2016-2020, excluding TNKS 1/2 inhibitors. EXPERT OPINION: The outstanding success demonstrated by the FDA approved PARP inhibitors has fueled further clinical evaluations for expansion of their clinical utilities. The current clinical investigations include new candidates as well as marketed PARP-targeted drugs, both as single agents and in combination with other chemotherapeutics. Recent advances have also unveiled critical roles of other PARPs in oncogenic signal transduction, in addition to those of the well-documented PARP1/2 and TNKS1/2 enzymes. Further studies on lesser-known PARP members are urgently needed for functional annotations and for understanding their roles in cancer progression and other human diseases.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Desenho de Fármacos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Neoplasias/patologia , Patentes como Assunto , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores
8.
Bioorg Chem ; 102: 104075, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777641

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1), a widely explored anticancer drug target, plays an important role in single-strand DNA break repair processes. High-throughput virtual screening (HTVS) of a Maybridge small molecule library using the PARP1-benzimidazole-4-carboxamide co-crystal structure and pharmacophore model led to the identification of eleven compounds. These compounds were evaluated using recombinant PARP1 enzyme assay that resulted in the acquisition of three PARP1 inhibitors: 3 (IC50 = 12 µM), 4 (IC50 = 5.8 µM), and 10 (IC50 = 0.88 µM). Compound 4 (2,3-dihydro-1,4-benzodioxine-5-carboxamide) was selected as a lead and was subjected to further chemical modifications, involving analogue synthesis and scaffold hopping. These efforts led to the identification of (Z)-2-(4-hydroxybenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide (49, IC50 = 0.082 µM) as the most potent inhibitor of PARP1 from the series.


Assuntos
Dioxinas/síntese química , Dioxinas/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Dioxinas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Relação Estrutura-Atividade
9.
Science ; 368(6486)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32241924

RESUMO

The success of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors (PARPi) to treat cancer relates to their ability to trap PARP-1 at the site of a DNA break. Although different forms of PARPi all target the catalytic center of the enzyme, they have variable abilities to trap PARP-1. We found that several structurally distinct PARPi drive PARP-1 allostery to promote release from a DNA break. Other inhibitors drive allostery to retain PARP-1 on a DNA break. Further, we generated a new PARPi compound, converting an allosteric pro-release compound to a pro-retention compound and increasing its ability to kill cancer cells. These developments are pertinent to clinical applications where PARP-1 trapping is either desirable or undesirable.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Quebras de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerase-1/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Humanos , Isoindóis/química , Isoindóis/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Domínios Proteicos
10.
J Med Chem ; 63(11): 5625-5663, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32031378

RESUMO

The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.


Assuntos
Acetileno/química , Química Farmacêutica , Alcinos/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Química Click , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Meia-Vida , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Inibidores da Transcriptase Reversa/química
11.
J Med Chem ; 62(11): 5330-5357, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31042381

RESUMO

Poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitors are a class of anticancer drugs that block the catalytic activity of PARP proteins. Optimization of our lead compound 1 (( Z)-2-benzylidene-3-oxo-2,3-dihydrobenzofuran-7-carboxamide; PARP-1 IC50 = 434 nM) led to a tetrazolyl analogue (51, IC50 = 35 nM) with improved inhibition. Isosteric replacement of the tetrazole ring with a carboxyl group (60, IC50 = 68 nM) gave a promising new lead, which was subsequently optimized to obtain analogues with potent PARP-1 IC50 values (4-197 nM). PARP enzyme profiling revealed that the majority of compounds are selective toward PARP-2 with IC50 values comparable to clinical inhibitors. X-ray crystal structures of the key inhibitors bound to PARP-1 illustrated the mode of interaction with analogue appendages extending toward the PARP-1 adenosine-binding pocket. Compound 81, an isoform-selective PARP-1/-2 (IC50 = 30 nM/2 nM) inhibitor, demonstrated selective cytotoxic effect toward breast cancer gene 1 ( BRCA1)-deficient cells compared to isogenic BRCA1-proficient cells.


Assuntos
Adenosina/metabolismo , Benzofuranos/síntese química , Benzofuranos/farmacologia , Desenho de Fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Motivos de Aminoácidos , Benzofuranos/química , Benzofuranos/metabolismo , Biocatálise , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/química , Relação Estrutura-Atividade
12.
J Med Chem ; 61(3): 834-864, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29251928

RESUMO

A novel set of 64 analogues based on our lead compound 1 was designed and synthesized with an initial objective of understanding the structural requirements of ligands binding to a highly perplexing substrate-binding site of P-glycoprotein (P-gp) and their effect on modulating the ATPase function of the efflux pump. Compound 1, a stimulator of P-gp ATPase activity, was transformed to ATPase inhibitory compounds 39, 53, and 109. The ATPase inhibition by these compounds was predominantly contributed by the presence of a cyclohexyl group in lieu of the 2-aminobenzophenone moiety of 1. The 4,4-difluorocyclohexyl analogues, 53 and 109, inhibited the photolabeling by [125I]-IAAP, with IC50 values of 0.1 and 0.76 µM, respectively. Selected compounds were shown to reverse paclitaxel resistance in HEK293 cells overexpressing P-gp and were selective toward P-gp over CYP3A4. Induced-fit docking highlighted a plausible binding pattern of inhibitory compounds in the putative-binding pocket of P-gp. The current study underscores the stringent requirement by P-gp to bind to chemically similar molecules.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/química , Peptidomiméticos/síntese química , Peptidomiméticos/farmacologia , Tiazóis/química , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Simulação de Acoplamento Molecular , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
13.
Oncotarget ; 8(55): 93785-93799, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212189

RESUMO

Previous reports have shown that some tyrosine kinase inhibitors (TKIs) could inhibit the ATP-binding cassette (ABC) transporters involved in multidrug resistance (MDR). Quizartinib (AC220), a potent class III receptor tyrosine kinase inhibitor (TKI), was synthesized to selectively inhibit FMS-like tyrosine kinase-3 (FLT3), a target in the treatment of acute myeloid leukemia (AML). Quizartinib is currently under clinical trials for FLT3 ITD and wild-type AML and is tested in combination with chemotherapy. While non-toxic to cell lines, quizartinib at 3 µM showed significant reversal effect on wild-type and mutant ABCG2 (R482T)-mediated MDR, and only a moderate reversal effect on mutant ABCG2 (R482G)-mediated MDR. Results also showed that quizartinib reversed MDR not by reducing the expression of ABCG2 protein, but by antagonizing the drug efflux function and increasing the intracellular accumulation of substrate anticancer drugs in ABCG2-overexpressing cells. Importantly, quizartinib at 30 mg/kg strongly enhanced the effect of topotecan (3 mg/kg) in ABCG2-overexpressing (H460/MX20) xenografts in athymic nude mice. These results demonstrated that quizartinib potentiates the antineoplastic activity of wild-type and R482T mutant ABCG2 substrates. These findings may be useful in clinical practice for cancer combination therapy with quizartinib.

14.
Virus Genes ; 53(4): 522-531, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28425034

RESUMO

The molluscum contagiosum virus (MCV) uses a variety of immune evasion strategies to antagonize host immune responses. Two MCV proteins, MC159 and MC160, contain tandem death effector domains (DEDs). They are reported to inhibit innate immune signaling events such as NF-κB and IRF3 activation, and apoptosis. The RxDL motif of MC159 is required for inhibition of both apoptosis and NF-κB activation. However, the role of the conserved RxDL motif in the MC160 DEDs remained unknown. To answer this question, we performed alanine mutations to neutralize the arginine and aspartate residues present in the MC160 RxDL in both DED1 and DED2. These mutations were further modeled against the structure of the MC159 protein. Surprisingly, the RxDL motif was not required for MC160's ability to inhibit MAVS-induced IFNß activation. Further, unlike previous results with the MC159 protein, mutations within the RxDL motif of MC160 had no effect on the ability of MC160 to dampen TNF-α-induced NF-κB activation. Molecular modeling predictions revealed no overall changes to the structure in the MC160 protein when the amino acids of both RxDL motifs were mutated to alanine (DED1 = R67A D69A; DED2 = R160A D162A). Taken together, our results demonstrate that the RxDL motifs present in the MC160 DEDs are not required for known functions of the viral protein.


Assuntos
Evasão da Resposta Imune , Molusco Contagioso/virologia , Vírus do Molusco Contagioso/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia , Motivos de Aminoácidos , Apoptose , Humanos , Interferon beta/genética , Interferon beta/imunologia , Molusco Contagioso/genética , Molusco Contagioso/imunologia , Molusco Contagioso/fisiopatologia , Vírus do Molusco Contagioso/química , Vírus do Molusco Contagioso/genética , Domínios Proteicos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteínas Virais/genética
15.
Sci Rep ; 7: 42106, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181548

RESUMO

Multidrug resistance (MDR) attenuates the chemotherapy efficacy and increases the probability of cancer recurrence. The accelerated drug efflux mediated by ATP-binding cassette (ABC) transporters is one of the major MDR mechanisms. This study investigated if TTT-28, a newly synthesized thiazole-valine peptidomimetic, could reverse ABCB1-mediated MDR in vitro and in vivo. TTT-28 reversed the ABCB1-mediated MDR and increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by selectively blocking the efflux function of ABCB1, but not interfering with the expression level and localization of ABCB1. Animal study revealed that TTT-28 enhanced the intratumoral concentration of paclitaxel and promoted apoptosis, thereby potently inhibiting the growth of ABCB1 overexpressing tumors. But TTT-28 did not induce the toxicity (cardiotoxicity/myelosuppression) of paclitaxel in mice. In this study, we synthesized and evaluated a novel selective inhibitor of ABCB1 (TTT-28) with high efficacy and low toxicity. The identification and characterization of this new thiazole-valine peptidomimetic will facilitate design and synthesis of a new generation of ABCB1 inhibitors, leading to further research on multidrug resistance and combination chemotherapy. Furthermore, the strategy that co-administer MDR-ABCB1 inhibitor to overcome the resistance of one FDA approved, widely used chemotherapeutic paclitaxel, may be promising direction for the field of adjuvant chemotherapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Peptidomiméticos/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Paclitaxel/metabolismo , Paclitaxel/farmacocinética , Tiazóis/metabolismo , Resultado do Tratamento , Valina/metabolismo
16.
Sci Rep ; 6: 25694, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27157787

RESUMO

ATP-Binding Cassette transporters are involved in the efflux of xenobiotic compounds and are responsible for decreasing drug accumulation in multidrug resistant (MDR) cells. Discovered by structure-based virtual screening algorithms, bafetinib, a Bcr-Abl/Lyn tyrosine kinase inhibitor, was found to have inhibitory effects on both ABCB1- and ABCG2-mediated MDR in this in-vitro investigation. Bafetinib significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates and increased the intracellular accumulation of anticancer drugs, particularly doxorubicin and [(3)H]-paclitaxel in ABCB1 overexpressing cells; mitoxantrone and [(3)H]-mitoxantrone in ABCG2 overexpressing cells, respectively. Bafetinib stimulated ABCB1 ATPase activities while inhibited ABCG2 ATPase activities. There were no significant changes in the expression level or the subcellular distribution of ABCB1 and ABCG2 in the cells exposed to 3 µM of bafetinib. Overall, our study indicated that bafetinib reversed ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings might be useful in developing combination therapy for MDR cancer treatment.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Pirimidinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fluorescência , Humanos , Mitoxantrona/farmacologia , Mutação/genética , Paclitaxel/farmacologia , Pirimidinas/química , Fatores de Tempo , Vanadatos/farmacologia
17.
Pharm Res ; 33(6): 1456-71, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26951566

RESUMO

PURPOSE: The purpose of this study was to develop an amorphous solid dispersion (SD) of an extremely water-insoluble and very weakly basic drug, itraconazole (ITZ), by interaction with weak organic acids and then drying that would enhance dissolution rate of drug and physical stability of formulation. METHODS: Aqueous solubility of ITZ in concentrated solutions of weak organic acids, such as glutaric, tartaric, malic and citric acid, was determined. Solutions with high drug solubility were dried using vacuum oven and the resulting SDs having 2 to 20% drug load were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The dissolution of SDs was initially studied in 250 mL of 0.1 N HCl (pH 1.1), and any undissolved solids were collected and analyzed by PXRD. The pH of the dissolution medium was then changed from 1.1 to 5.5, particle size of precipitates were measured, and drug concentrations in solution were determined by filtration through membrane filters of varying pore sizes. RESULTS: The aqueous solubility of ITZ was greatly enhanced in presence of weak acids. While the solubility of ITZ in water was ~4 ng/ mL, it increased to 25-40 mg per g of solution at 25°C and 200 mg per g of solution at 65°C at a high acid concentration leading to extremely high solubilization. PXRD of SDs indicated that ITZ was present in the amorphous form, wherein the acid formed a partially crystalline matrix. ATR-FTIR results showed possible weak interactions, such as hydrogen bonding, between drug and acid but there was no salt formation. SDs formed highly supersaturated solutions at pH 1.1 and had superior dissolution rate as compared to amorphous drug and physical mixtures of drug and acids. Following the change in pH from 1.1 to 5.5, ITZ precipitated as mostly nanoparticles, providing high surface area for relatively rapid redissolution. CONCLUSIONS: A method of highly solubilizing an extremely water-insoluble drug, ITZ, in aqueous media and converting it into an amorphous form in a physically stable SD was successfully investigated. The dissolution rate and the extent of supersaturation of the drug in dissolution media improved greatly, and any precipitate formed at high pH had very small particle size.


Assuntos
Antifúngicos/química , Ácido Cítrico/química , Dessecação , Itraconazol/química , Tecnologia Farmacêutica/métodos , Varredura Diferencial de Calorimetria , Cristalização , Cristalografia por Raios X , Ácidos Dicarboxílicos/química , Composição de Medicamentos , Estabilidade de Medicamentos , Glutaratos/química , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Cinética , Malatos/química , Tamanho da Partícula , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Tartaratos/química
18.
J Enzyme Inhib Med Chem ; 30(5): 778-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25676325

RESUMO

Arachidonic acid is an unsaturated fatty acid liberated from phospholipids of cell membranes. NSAIDs are known as targets of cyclooxygenase enzyme (COX-1, COX-2 and COX-3) in arachidonic acid metabolism. This mechanism of COX-2 in carcinogenesis causes cancer. In addition, COX-2 plays a role in the early stages of hepatocarcinogenesis. Hepatitis C virus (HCV) infection is cause of liver cirrhosis and hepatocellular carcinoma (HCC). The aim of our study was to improve effective agents against HCV. A novel series of new etodolac 1,2,4-triazoles derivatives (4a-h) have been synthesized and investigated for their activity against HCV NS5B polymerase. Compound 4a was found to be the most active with IC(50) value of 14.8 µM. In accordance with these results, compound 4a was screened for anti-cancer activity on liver cancer cell lines (Huh7, Mahlavu, HepG2, FOCUS). Compound 4a showed anti-cancer activity against Huh7 human hepatoma cell line with IC(50) value of 4.29 µM. Therefore, compound 4a could be considered as a new anti-cancer and anti-HCV lead compound.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Etodolac/análogos & derivados , Hepacivirus/efeitos dos fármacos , Triazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Etodolac/síntese química , Etodolac/química , Etodolac/farmacologia , Hepacivirus/enzimologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Proteínas não Estruturais Virais/metabolismo
19.
Arch Pharm (Weinheim) ; 348(1): 10-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25449674

RESUMO

In continuation of our efforts to develop new derivatives as hepatitis C virus (HCV) NS5B inhibitors, we synthesized novel 5-arylidene-4-thiazolidinones. The novel compounds 29-42, together with their synthetic precursors 22-28, were tested for HCV NS5B inhibitory activity; 12 of these compounds displayed IC50 values between 25.3 and 54.1 µM. Compound 33, an arylidene derivative, was found to be the most active compound in this series with an IC50 value of 25.3 µM. Molecular docking studies were performed on the thumb pocket-II of NS5B to postulate the binding mode for these compounds.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Tiazolidinas/síntese química , Tiazolidinas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Desenho Assistido por Computador , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/metabolismo , Hepacivirus/enzimologia , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade , Tiazolidinas/metabolismo , Proteínas não Estruturais Virais/metabolismo
20.
Oncotarget ; 5(12): 4529-42, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24980828

RESUMO

ABCG2 is a potential biomarker causing multidrug resistance (MDR) in Non-Small Cell Lung Cancer (NSCLC). We conducted this study to investigate whether Icotinib, a small-molecule inhibitor of EGFR tyrosine kinase, could interact with ABCG2 transporter in NSCLC. Our results showed that Icotinib reversed ABCG2-mediated MDR by antagonizing the drug efflux function of ABCG2. Icotinib stimulated the ATPase activity in a concentration-dependent manner and inhibited the photolabeling of ABCG2 with [125I]-Iodoarylazidoprazosin, demonstrating that it interacts at the drug-binding pocket. Homology modeling predicted the binding conformation of Icotinib at Asn629 centroid-based grid of ABCG2. However, Icotinib at reversal concentration did not affect the expression levels of AKT and ABCG2. Furthermore, a combination of Icotinib and topotecan exhibited significant synergistic anticancer activity against NCI-H460/MX20 tumor xenografts. However, the inhibition of transport activity of ABCG2 was insufficient to overcome pemetrexed resistance in NCI-H460/MX20 cells, which was due to the co-upregulated thymidylate synthase (TS) and ABCG2 expression. This is the first report to show that the up-regulation of TS in ABCG2-overexpressing cell line NCI-H460/MX20 may play a role of resistance to pemetrexate. Our findings suggested different possible strategies of overcoming the resistance of topotecan and pemetrexed in the NSCLC patients.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Éteres de Coroa/farmacologia , Glutamatos/farmacologia , Guanina/análogos & derivados , Quinazolinas/farmacologia , Animais , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Guanina/farmacologia , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Pemetrexede , Timidilato Sintase , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA