Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Res Commun ; 48(1): 357-366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37707657

RESUMO

Canine seminal plasma is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles that are involved in many physiological and pathological processes including reproduction. We examined the expression of the extracellular vesicles surface antigens Aminopeptidase-N (CD13) and Dipeptidyl peptidase IV (CD26) by flow cytometry. For this study, third fraction of the ejaculate, from fertile adult male German Shepherd dogs, was manually collected twice, two days apart. FACS analyses revealed that CD13 and CD26 are co-expressed on the 69.3 ± 3.7% of extracellular vesicles and only a 2.0 ± 0.5% of extracellular vesicles express CD26 alone. On the other hand, 28.6 ± 3.6% of seminal EVs express CD13 alone. Our results agree with the hypothesis that CD26 needs to be co-expressed with other signal-transducing molecules, while CD13, can perform functions independently of the presence or co-expression of CD26. The results obtained in normal fertile dogs could represent physiological expression of these enzymes. Therefore, it would be interesting to carry out further studies to evaluate the expression of CD13 and CD26 on extracellular vesicles as biomarker for prostate pathological condition in dogs.


Assuntos
Dipeptidil Peptidase 4 , Sêmen , Cães , Masculino , Animais , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Citometria de Fluxo/veterinária
2.
Front Oncol ; 12: 888135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530309

RESUMO

Extracellular vesicles (EVs) are membrane enclosed spherical particles devoted to intercellular communication. Cancer-derived EVs (Ca-EVs) are deeply involved in tumor microenvironment remodeling, modifying the inflammatory phenotype of cancerous and non-cancerous residing cells. Inflammation plays a pivotal role in initiation, development, and progression of many types of malignancies. The key feature of cancer-related inflammation is the production of cytokines that incessantly modify of the surrounding environment. Interleukin-1ß (IL-1ß) is one of the most powerful cytokines, influencing all the initiation-to-progression stages of many types of cancers and represents an emerging critical contributor to chemoresistance. IL-1ß production strictly depends on the activation of inflammasome, a cytoplasmic molecular platform sensing exogenous and endogenous danger signals. It has been recently shown that Ca-EVs can activate the inflammasome cascade and IL-1ß production in tumor microenvironment-residing cells. Since inflammasome dysregulation has been established as crucial regulator in inflammation-associated tumorigenesis and chemoresistance, it is conceivable that the use of inflammasome-inhibiting drugs may be employed as adjuvant chemotherapy to counteract chemoresistance. This review focuses on the role of cancer-derived EVs in tuning tumor microenvironment unveiling the intricate network between inflammasome and chemoresistance.

3.
FASEB J ; 36(4): e22218, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218567

RESUMO

An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication. In this study, we aimed at investigating whether human amniotic stem cell-derived extracellular vesicles (HASC-EVs) were able to interfere with inflammasome activation in the THP-1 cell line. Two subsets of HASC-EVs were collected by sequential centrifugation, namely HASC-P10 and HASC-P100. We demonstrated that HASC-EVs were neither internalized into nor undertake a direct interaction with THP-1 cells. We showed that HASC-P10 and P100 were able to intrinsically produce ATP, which was further converted to adenosine by 5'-nucleotidase (CD73) and ectonucleoside triphosphate diphosphohydrolase-1 (CD39). We found that THP-1 cells conditioned with both types of HASC-EVs failed to activate the NLRP3/caspase-1/inflammasome platform in response to LPS and ATP treatment by a mechanism involving A2a adenosine receptor activation. These results support a role for HASC-EVs as independent metabolic units capable of modifying the cellular functions, leading to anti-inflammatory effects in monocytic cells.


Assuntos
Líquido Amniótico/citologia , Anti-Inflamatórios/farmacologia , Vesículas Extracelulares/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamação/prevenção & controle , Monócitos/citologia , Células-Tronco/citologia , Adenosina/metabolismo , Líquido Amniótico/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Monócitos/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Células-Tronco/metabolismo , Células THP-1
4.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34847078

RESUMO

Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here, we define a molecular pathway through which recombinant IL-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activated NADPH oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1-dependent antiinflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Oxirredução/efeitos dos fármacos
5.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638532

RESUMO

Bone metastases from prostate cancer (PCa) result from a complex cross-talk between PCa cells and osteoblasts (OB). Thus, targeting this interplay has become an attractive strategy to interfere with PCa bone dissemination. The agents currently used in clinical trials have proved ineffective, boosting research to identify additional mechanisms that may be involved in this two-directional talk. Here, we investigated whether and how 5-hydro-5-methylimidazolone (MG-H1), a specific methylglyoxal (MG)-derived advanced glycation end product (AGE), was a novel player in the dialogue between PCa and OB to drive PCa bone metastases. Conditioned medium from osteotropic PC3 PCa cells, pre-treated or not with a specific MG scavenger, was administrated to human primary OB and cell morphology, mesenchymal trans-differentiation, pro-osteogenic determinants, PCa-specific molecules, and migration/invasion were studied by phase-contrast microscopy, real-time PCR, western blot and specific assays, respectively. We found that PC3 cells were able to release MG-H1 that, by binding to the receptor for AGEs (RAGE) on OB, reprogrammed them into a less-differentiate phenotype, endowed with some PCa-specific molecular features and malignant properties, in a mechanism involving reactive oxidative species (ROS) production and NF-kB pathway activation. These findings provide novel insights into the mechanisms of PCa osteoblastic metastases and foster in vivo research toward new therapeutic strategies interfering with PCa/OB cross-talk.


Assuntos
Neoplasias Ósseas/secundário , Desdiferenciação Celular/fisiologia , Imidazóis/metabolismo , Ornitina/análogos & derivados , Osteoblastos/citologia , Neoplasias da Próstata/patologia , Antígenos de Neoplasias/metabolismo , Osso e Ossos/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Meios de Cultivo Condicionados/farmacologia , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ornitina/metabolismo , Células PC-3 , Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo
6.
Cancers (Basel) ; 13(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199263

RESUMO

Metastatic prostate cancer (mPCa) is a disease for which to date there is not curative therapy. Even the recent and attractive immunotherapeutic approaches targeting PD-L1, an immune checkpoint protein which helps cancer cells to escape from immunosurveillance, have proved ineffective. A better understanding of the molecular mechanisms contributing to keep an immunosuppressive microenvironment associated with tumor progression and refractoriness to PD-L1 inhibitors is urgently needed. In the present study, by using gene silencing and specific activators or scavengers, we demonstrated, in mPCa cell models, that methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs), especially 5-hydro-5-methylimidazolone (MG-H1), and its metabolizing enzyme, glyoxalase 1 (Glo1), contribute to maintain an immunosuppressive microenvironment through MG-H1-mediated PD-L1 up-regulation and to promote cancer progression. Moreover, our findings suggest that this novel mechanism might be responsible, at least in part, of mPCa resistance to PD-L1 inhibitors, such as atezolizumab, and that targeting it may sensitize cells to this PD-L1 inhibitor. These findings provide novel insights into the mechanisms of mPCa immunosurveillance escape and help in providing the basis to foster in vivo research toward novel therapeutic strategies for immunotherapy of mPCa.

7.
Biomolecules ; 11(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070682

RESUMO

Inflammation, by inducing a tumor-promoting microenvironment, is a hallmark for prostate cancer (PCa) progression. NOD-like receptor protein 3 (NLRP3)-inflammasome activation, interleukin-1ß (IL-1ß) secretion, and cancer cell-released extracellular vesicles (EVs) contribute to the establishment of tumor microenvironment. We have shown that PC3-derived EVs (PC3-EVs) activate inflammasome cascade in non-cancerous PNT2 cells. It is known that the endogenous biomolecules and Natriuretic Peptides (NPs), such as ANP and BNP, inhibit inflammasome activation in immune cells. Here we investigated whether ANP and BNP modify PCa inflammatory phenotype in vitro. By using PNT2, LNCaP, and PC3 cell lines, which model different PCa progression stages, we analyzed inflammasome activation and the related pathways by Western blot and IL-1ß secretion by ELISA. We found that tumor progression is characterized by constitutive inflammasome activation, increased IL-1ß secretion, and reduced endogenous NPs expression. The administration of exogenous ANP and BNP, via p38-MAPK or ERK1/2-MAPK, by inducing NLRP3 phosphorylation, counteract inflammasome activation and IL-1ß maturation in PC3 and PC3-EVs-treated PNT2 cells, respectively. Our results demonstrate that NPs, by interfering with cell-specific signaling pathways, exert pleiotropic anti-inflammatory effects converging toward inflammasome phosphorylation and suggest that NPs can be included in a drug repurposing process for PCa.


Assuntos
Antineoplásicos/farmacologia , Fator Natriurético Atrial/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeo Natriurético Encefálico/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata , Linhagem Celular Tumoral , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
8.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375031

RESUMO

Dysregulated inflammasome activation and interleukin (IL)-1ß production are associated with several inflammatory disorders. Three different routes can lead to inflammasome activation: a canonical two-step, a non-canonical Caspase-4/5- and Gasdermin D-dependent, and an alternative Caspase-8-mediated pathway. Natriuretic Peptides (NPs), Atrial Natriuretic Peptide (ANP) and B-type Natriuretic Peptide (BNP), binding to Natriuretic Peptide Receptor-1 (NPR-1), signal by increasing cGMP (cyclic guanosine monophosphate) levels that, in turn, stimulate cGMP-dependent protein kinase-I (PKG-I). We previously demonstrated that, by counteracting inflammasome activation, NPs inhibit IL-1ß secretion. Here we aimed to decipher the molecular mechanism underlying NPs effects on THP-1 cells stimulated with lipopolysaccharide (LPS) + ATP. Involvement of cGMP and PKG-I were assessed pre-treating THP-1 cells with the membrane-permeable analogue, 8-Br-cGMP, and the specific inhibitor KT-5823, respectively. We found that NPs, by activating NPR-1/cGMP/PKG-I axis, lead to phosphorylation of NLRP3 at Ser295 and to inflammasome platform disassembly. Moreover, by increasing intracellular cGMP levels and activating phosphodiesterases, NPs interfere with both Gasdermin D and Caspase-8 cleavage, indicating that they disturb non-canonical and alternative routes of inflammasome activation. These results showed that ANP and BNP anti-inflammatory and immunomodulatory actions may involve the inhibition of all the known routes of inflammasome activation. Thus, NPs might be proposed for the treatment of the plethora of diseases caused by a dysregulated inflammasome activation.


Assuntos
Fator Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo , Inflamassomos/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Trifosfato de Adenosina/farmacologia , Caspase 8/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Humanos , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1
9.
Methods Mol Biol ; 2152: 445-449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524572

RESUMO

Glyoxalase 1 (Glo1) is a glutathione (GSH)-dependent enzyme that catalyzes the isomerization of the hemithioacetal formed non-enzymatically from methylglyoxal (MG) and GSH to S-D-lactoylglutathione (SLG). The activity of Glo1 is measured spectrophotometrically by following the increase of absorbance at 240 nm and 25 °C, attributable to the formation of SLG. The hemithioacetal is preformed by incubation of 2 mM MG and 1 mM GSH in 0.1 M sodium phosphate buffer (PBS) pH 7.2, at 25 °C for 10 min. The cell extract is then added, and the A240 is monitored over 5-min incubation against correction for blank. Glo1 activity is given in units per mg of protein where one unit activity is defined as 1 µmole of SLG produced per min under assay conditions. Here, we describe measurement of Glo1 activity in established cellular models of cerebral cavernous malformation (CCM) disease, including KRIT1-knockout mouse embryonic fibroblast (MEF) and KRIT1-silenced human brain microvascular endothelial (hBMEC) cells.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central/enzimologia , Lactoilglutationa Liase/metabolismo , Espectrofotometria , Animais , Ativação Enzimática , Fibroblastos/enzimologia , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Humanos , Proteína KRIT1/genética , Proteína KRIT1/metabolismo , Lactoilglutationa Liase/química , Camundongos , Estresse Oxidativo , Espectrofotometria/métodos
10.
Cancers (Basel) ; 11(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480312

RESUMO

Prostate cancer (PCa) progression is strictly associated with microenvironmental conditions, which can be modified by cancer-released extracellular vesicles (EVs), important mediators of cell-cell communication. However, the role of EVs in the inflammatory cross-talk between cancer cells and microenvironment-residing cells remains largely unknown. To evaluate the role of EVs in the tumour microenvironment, we treated the non-cancerous prostate cell line PNT2 with EVs isolated from advanced-stage prostate cancer PC3 (PC3-EVs). Caspase-1-mediated IL-1ß maturation was evaluated after 24 h incubation with EVs. Moreover, the effect of PC3-EVs on differentiated macrophagic THP-1 cells was assessed by analyzing cytokine expression and PC3 cells migration and proliferation profiles. We illustrated that PC3 cells contain active NLRP3-inflammasome cascade and secrete IL-1ß. PC3-EVs affect the PNT2 inflammatory response, inducing caspase-1-mediated IL-1ß maturation via ERK1/2-mediated lysosomal destabilization and cathepsin B activation. We also verified that PC3-EVs induce a functional TAM-like polarization in differentiated THP-1 cells. Our results demonstrated that cancer-derived EVs induce an inflammatory response in non-cancerous prostate cells, while inducing an immunomodulatory phenotype in immune cells. These apparently contradictory effects are both committed to strengthening the tumour-promoting microenvironment.

11.
Eur J Pharmacol ; 833: 173-182, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29886240

RESUMO

Stem cells have high potential for cell therapy in regenerative medicine. We previously isolated stem cell types from human amniotic fluid, derived from prenatal amniocentesis. One type, characterized by a fast doubling time, was designated as fast human amniotic stem cells (fHASCs). These cells exhibited high differentiation potential and immunoregulatory properties. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that influences stem-cell pluripotency, differentiation, mobility, and regulates immune functions. In this study, we investigated the influence of S1P on fHASC migration, proliferation, differentiation and immune regulatory functions. We found that fHASC stimulation with S1P potentiated their migratory and proliferative activity in vitro. Notably, short fHASC exposure to S1P enhanced their differentiation towards multiple lineages, including adipocytes, osteocytes and endothelial cells, an effect that was associated with downregulation of the main transcription factors involved in the maintenance of a stem-cell undifferentiated state. A specific crosstalk between S1P and tumor growth factor ß1 (TGF-ß1) has recently been demonstrated. We found that fHASC exposure to S1P in combination with TGF-ß1 promoted the expression of the immune regulatory pathway of indoleamine 2,3-dioxygenase 1 (IDO1). In addition, human peripheral blood mononuclear cells, co-cultured with fHASCs treated with S1P and TGF-ß1, expanded regulatory T-cells, via a mechanism requiring IDO1. Overall, this study demonstrates that S1P potentiates several properties in fHASCs, an effect that may be critical for exploiting the therapeutic potential of fHASCs and might explain the specific effects of S1P on stem cells during pregnancy.


Assuntos
Líquido Amniótico/citologia , Lisofosfolipídeos/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucócitos Mononucleares , Células-Tronco Pluripotentes/fisiologia , Gravidez , Transdução de Sinais/imunologia , Esfingosina/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
FASEB J ; : fj201800245R, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29757674

RESUMO

In cancer cells, global genomic hypomethylation is found together with localized hypermethylation of CpG islands within the promoters and regulatory regions of silenced tumor suppressor genes. Demethylating agents may reverse hypermethylation, thus promoting gene re-expression. Unfortunately, demethylating strategies are not efficient in solid tumor cells. DNA demethylation is mediated by ten-eleven translocation enzymes (TETs). They sequentially convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is associated with active transcription; 5-formylcytosine; and finally, 5-carboxylcytosine. Although α-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid, the major n-3 polyunsaturated fatty acids, have anti-cancer effects, their action, as DNA-demethylating agents, has never been investigated in solid tumor cells. Here, we report that EPA demethylates DNA in hepatocarcinoma cells. EPA rapidly increases 5hmC on DNA, inducing p21Waf1/Cip1 gene expression, which slows cancer cell-cycle progression. We show that the underlying molecular mechanism involves TET1. EPA simultaneously binds peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), thus promoting their heterodimer and inducing a PPARγ-TET1 interaction. They generate a TET1-PPARγ-RXRα protein complex, which binds to a hypermethylated CpG island on the p21 gene, where TET1 converts 5mC to 5hmC. In an apparent shuttling motion, PPARγ and RXRα leave the DNA, whereas TET1 associates stably. Overall, EPA directly regulates DNA methylation levels, permitting TET1 to exert its anti-tumoral function.-Ceccarelli, V., Valentini, V., Ronchetti, S., Cannarile, L., Billi, M., Riccardi, C., Ottini, L., Talesa, V. N., Grignani, F., Vecchini, A., Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism.

13.
Int J Mol Sci ; 19(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385039

RESUMO

Urological cancers include a spectrum of malignancies affecting organs of the reproductive and/or urinary systems, such as prostate, kidney, bladder, and testis. Despite improved primary prevention, detection and treatment, urological cancers are still characterized by an increasing incidence and mortality worldwide. While advances have been made towards understanding the molecular bases of these diseases, a complete understanding of the pathological mechanisms remains an unmet research goal that is essential for defining safer pharmacological therapies and prognostic factors, especially for the metastatic stage of these malignancies for which no effective therapies are currently being used. Glyoxalases, consisting of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), are enzymes that catalyze the glutathione-dependent metabolism of cytotoxic methylglyoxal (MG), thus protecting against cellular damage and apoptosis. They are generally overexpressed in numerous cancers as a survival strategy by providing a safeguard through enhancement of MG detoxification. Increasing evidence suggests that glyoxalases, especially Glo1, play an important role in the initiation and progression of urological malignancies. In this review, we highlight the critical role of glyoxalases as regulators of tumorigenesis in the prostate through modulation of various critical signaling pathways, and provide an overview of the current knowledge on glyoxalases in bladder, kidney and testis cancers. We also discuss the promise and challenges for Glo1 inhibitors as future anti-prostate cancer (PCa) therapeutics and the potential of glyoxalases as biomarkers for PCa diagnosis.


Assuntos
Lactoilglutationa Liase/metabolismo , Tioléster Hidrolases/metabolismo , Neoplasias Urológicas/enzimologia , Antineoplásicos/uso terapêutico , Carcinogênese , Feminino , Humanos , Lactoilglutationa Liase/antagonistas & inibidores , Masculino , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/metabolismo
14.
Free Radic Biol Med ; 115: 202-218, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29170092

RESUMO

KRIT1 (CCM1) is a disease gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the population. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered redox homeostasis and abnormal activation of the redox-sensitive transcription factor c-Jun, which collectively result in pro-oxidative, pro-inflammatory and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease and raising the possibility that KRIT1 loss-of-function exerts pleiotropic effects on multiple redox-sensitive mechanisms. To address this possibility, we investigated major redox-sensitive pathways and enzymatic systems that play critical roles in fundamental cytoprotective mechanisms of adaptive responses to oxidative stress, including the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), a pivotal stress-responsive defense enzyme involved in cellular protection against glycative and oxidative stress through the metabolism of methylglyoxal (MG). This is a potent post-translational protein modifier that may either contribute to increased oxidative molecular damage and cellular susceptibility to apoptosis, or enhance the activity of major apoptosis-protective proteins, including heat shock proteins (Hsps), promoting cell survival. Experimental outcomes showed that KRIT1 loss-of-function induces a redox-sensitive sustained upregulation of Nrf2 and Glo1, and a drop in intracellular levels of MG-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that counteracts intrinsic oxidative stress but increases susceptibility to oxidative DNA damage and apoptosis, sensitizing cells to further oxidative challenges. While supporting and extending the pleiotropic functions of KRIT1, these findings shed new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell predisposition to oxidative damage, thus providing valuable new insights into CCM pathogenesis and novel options for the development of preventive and therapeutic strategies.


Assuntos
Encéfalo/patologia , Neoplasias do Sistema Nervoso Central/genética , Células Endoteliais/fisiologia , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Proteína KRIT1/genética , Mutação/genética , Estresse Oxidativo/genética , Animais , Apoptose , Autofagia/genética , Células Cultivadas , Neoplasias do Sistema Nervoso Central/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Homeostase , Humanos , Proteína KRIT1/metabolismo , Lactoilglutationa Liase/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional , Aldeído Pirúvico/metabolismo
15.
BMC Cancer ; 17(1): 502, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747156

RESUMO

BACKGROUND: We investigated whether GSTT1 ("null" allele), GSTM1 ("null"allele), GSTP1 (A313G), RFC1 (G80A), MTHFR (C677T), TS (2R/3R) polymorphisms were associated with toxicity and survival in patients with early breast cancer (EBC) treated with adjuvant chemotherapy (CT). METHODS: This prospective trial included patients with stage I-III BC subjected to CT with CMF or FEC regimens. PCR-RFLP was performed for MTHFR, RFC1 and GSTP1, while PCR for TS, GSTT1 and GSTM1 genes. RESULTS: Among the 244 patients consecutively enrolled, 48.7% were treated with FEC and 51.3% with CMF. Patients with TS2R/3R genotype showed less frequently severe neutropenia (G3/G4) than those with TS2R/2R and 3R/3R genotype (p = 0.038). Patients with MTHFRCT genotype had a higher probability of developing severe neutropenia than those with MTHFR CC genotype (p = 0.043). Patients with RFC1GG or GSTT1-null genotype or their combination (GSTT1-null/RFC1GG) were significantly associated with a shorter disease free survival (DFS) (p = 0.009, p = 0.053, p = 0.003, respectively) and overall survival (OS) (p = 0.036, p = 0.015, p = 0.005, respectively). Multivariate analysis confirmed the association of RFC1GG genotype with a shorter DFS (p = 0.018) and of GSTT1-null genotype of a worse OS (p = 0.003), as well as for the combined genotypes GSTT1-null/RFC1GG, (DFS: p = 0.004 and OS: p = 0.003). CONCLUSIONS: Our data suggest that TS2R/2R and 3R/3R or MTHFR CT genotypes have a potential role in identifying patients with greater risk of toxicity to CMF/FEC and that RFC1 GG and GSTT1-null genotypes alone or in combination could be important markers in predicting clinical outcome in EBC patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carcinoma Ductal de Mama/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/mortalidade , Quimioterapia Adjuvante , Ciclofosfamida/efeitos adversos , Ciclofosfamida/uso terapêutico , Intervalo Livre de Doença , Epirubicina/efeitos adversos , Epirubicina/uso terapêutico , Feminino , Fluoruracila/efeitos adversos , Fluoruracila/uso terapêutico , Frequência do Gene , Estudos de Associação Genética , Genótipo , Glutationa S-Transferase pi/genética , Glutationa Transferase/genética , Humanos , Estimativa de Kaplan-Meier , Metotrexato/efeitos adversos , Metotrexato/uso terapêutico , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Pessoa de Meia-Idade , Análise Multivariada , Modelos de Riscos Proporcionais , Estudos Prospectivos
16.
Mediators Inflamm ; 2017: 5858315, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28331244

RESUMO

Interleukin-1ß (IL-1ß) is a pleiotropic cytokine and a crucial mediator of inflammatory and immune responses. IL-1ß processing and release are tightly controlled by complex pathways such as NF-kB/ERK1/2, to produce pro-IL-1ß, and NALP3/ASC/Caspase-1 inflammasome, to produce the active secreted protein. Dysregulation of both IL-1ß and its related pathways is involved in inflammatory/autoimmune disorders and in a wide range of other diseases. Identifying molecules modulating their expression is a crucial need to develop new therapeutic agents. IL-1ß is a strong regulator of Brain Natriuretic Peptide (BNP), a hormone involved in cardiovascular homeostasis by guanylyl cyclase Natriuretic Peptide Receptor (NPR-1). An emerging role of BNP in inflammation and immunity, although proposed, remains largely unexplored. Here, we newly demonstrated that, in human THP-1 monocytes, LPS/ATP-induced IL-1ß secretion is strongly inhibited by BNP/NPR-1/cGMP axis at all the molecular mechanisms that tightly control its production and release, NF-kB, ERK 1/2, and all the elements of NALP3/ASC/Caspase-1 inflammasome cascade, and that NALP3 inflammasome inhibition is directly related to BNP deregulatory effect on NF-kB/ERK 1/2 activation. Our findings reveal a novel potent anti-inflammatory and immunomodulatory role for BNP and open new alleys of investigation for a possible employment of this endogenous agent in the treatment of inflammatory/immune-related and IL-1ß/NF-kB/ERK1/2/NALP3/ASC/Caspase-1-associated diseases.


Assuntos
Interleucina-1beta/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Sobrevivência Celular , Regulação para Baixo , Ativação Enzimática , Homeostase , Humanos , Inflamassomos/metabolismo , Inflamação , Interleucina-1beta/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Monócitos/citologia
17.
Nat Commun ; 8: 14017, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28090087

RESUMO

T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25+ type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF.


Assuntos
Fibrose Cística/imunologia , Linfócitos/imunologia , Mastócitos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Fibrose Cística/genética , Feminino , Humanos , Imunidade Inata , Lactente , Interleucina-9/imunologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-kit/imunologia , Adulto Jovem
18.
Nat Commun ; 7: 10791, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26972847

RESUMO

Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF.


Assuntos
Aspergilose/imunologia , Fibrose Cística/imunologia , Citocinas/genética , Células Epiteliais/imunologia , Inflamassomos/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Pulmão/metabolismo , Infecções por Pseudomonas/imunologia , Adolescente , Adulto , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Aspergillus fumigatus , Autofagia/genética , Autofagia/imunologia , Western Blotting , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular , Criança , Pré-Escolar , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Citocinas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Lactente , Inflamassomos/imunologia , Inflamação , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Polimorfismo de Nucleotídeo Único , Pseudomonas aeruginosa , Mucosa Respiratória/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
19.
Free Radic Biol Med ; 92: 110-125, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26784015

RESUMO

Glyoxalase I (Glo1) is the main scavenging enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). AGEs are known to control multiple biological processes, including epithelial to mesenchymal transition (EMT), a multistep phenomenon associated with cell transformation, playing a major role in a variety of diseases, including cancer. Crystalline silica is a well-known occupational health hazard, responsible for a great number of human pulmonary diseases, such as silicosis. There is still much debate concerning the carcinogenic role of crystalline silica, mainly due to the lack of a causal demonstration between silica exposure and carcinogenesis. It has been suggested that EMT might play a role in crystalline silica-induced lung neoplastic transformation. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 is involved in Min-U-Sil 5 (MS5) crystalline silica-induced EMT in BEAS-2B human bronchial epithelial cells chronically exposed, and whether this is associated with the beginning of a neoplastic-like transformation process. By using gene silencing/overexpression and scavenging/inhibitory agents, we demonstrated that MS5 induced hydrogen peroxide-mediated c-Jun-dependent Glo1 up-regulation which resulted in a decrease in the Argpyrimidine-modified Hsp70 protein level which triggered EMT in a novel mechanism involving miR-21 and SMAD signalling. The observed EMT was associated with a neoplastic-like phenotype. The results obtained provide a causal in vitro demonstration of the MS5 pro-carcinogenic transforming role and more importantly they provide new insights into the mechanisms involved in this process, thus opening new paths in research concerning the in vivo study of the carcinogenic potential of crystalline silica.


Assuntos
Transformação Celular Neoplásica/genética , Transição Epitelial-Mesenquimal/genética , Proteínas de Choque Térmico HSP70/biossíntese , Lactoilglutationa Liase/genética , MicroRNAs/genética , Proteínas Smad/genética , Brônquios/efeitos dos fármacos , Brônquios/patologia , Transformação Celular Neoplásica/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Ornitina/análogos & derivados , Ornitina/química , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Pirimidinas/química , Aldeído Pirúvico/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/toxicidade
20.
Immunol Res ; 64(1): 303-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26616294

RESUMO

Atrial natriuretic peptide (ANP) is an hormone/paracrine/autocrine factor regulating cardiovascular homeostasis by guanylyl cyclase natriuretic peptide receptor (NPR-1). ANP plays an important role also in regulating inflammatory and immune systems by altering macrophages functions and cytokines secretion. Interleukin-1ß (IL-1ß) is a potent pro-inflammatory cytokine involved in a wide range of biological responses, including the immunological one. Unlike other cytokines, IL-1ß production is rigorously controlled. Primarily, NF-kB activation is required to produce pro-IL-1ß; subsequently, NALP3 inflammasome/caspase-1 activation is required to cleave pro-IL-1ß into the active secreted protein. NALP3 is a molecular platform capable of sensing a large variety of signals and a major player in innate immune defense. Due to their pleiotropism, IL-1ß and NALP3 dysregulation is a common feature of a wide range of diseases. Therefore, identifying molecules regulating IL-1ß/NALP3/caspase-1 expression is an important step in the development of new potential therapeutic agents. The aim of our study was to evaluate the effect of ANP on IL-1ß/NALP3/caspase-1 expression in LPS/ATP-stimulated human THP1 monocytes. We provided new evidence of the direct involvement of ANP/NPR-1/cGMP axis on NF-kB/NALP3/caspase-1-mediated IL-1ß release and NF-kB-mediated pro-IL-1ß production. In particular, ANP inhibited both NF-kB and NALP3/caspase-1 activation leading to pro- and mature IL-1ß down-regulation. Our data, pointing out a modulatory role of this endogenous peptide on IL-1ß release and on NF-kB/NALP3/caspase-1 activation, indicate an important anti-inflammatory and immunomodulatory effect of ANP via these mechanisms. We suggest a possible employment of ANP for the treatment of inflammatory/immune-related diseases and IL-1ß/NALP3-associated disorders, affecting millions of people worldwide.


Assuntos
Fator Natriurético Atrial/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/imunologia , Monócitos/imunologia , Trifosfato de Adenosina/metabolismo , Apoptose , Fator Natriurético Atrial/imunologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Humanos , Imunidade Inata , Imunomodulação , Interleucina-1beta/metabolismo , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA