Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(9)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759721

RESUMO

The concurrent use of several medications is a common practice in the treatment of complex psychiatric conditions. One such commonly used combination is aripiprazole (ARI), an antipsychotic, and trazodone (TRZ), an antidepressant. In addition to their effects on dopamine and serotonin systems, both of these compounds are inhibitors of the 7-dehydrocholesterol reductase (DHCR7) enzyme. To evaluate the systemic and nervous system distribution of ARI and TRZ and their effects on cholesterol biosynthesis, adult mice were treated with both ARI and TRZ for 21 days. The parent drugs, their metabolites, and sterols were analyzed in the brain and various organs of mice using LC-MS/MS. The analyses revealed that ARI, TRZ, and their metabolites were readily detectable in the brain and organs, leading to changes in the sterol profile. The levels of medications, their metabolites, and sterols differed across tissues with notable sex differences. Female mice showed higher turnover of ARI and more cholesterol clearance in the brain, with several post-lanosterol intermediates significantly altered. In addition to interfering with sterol biosynthesis, ARI and TRZ exposure led to decreased ionized calcium-binding adaptor molecule 1 (IBA1) and increased DHCR7 protein expression in the cortex. Changes in sterol profile have been also identified in the spleen, liver, and serum, underscoring the systemic effect of ARI and TRZ on sterol biosynthesis. Long-term use of concurrent ARI and TRZ warrants further studies to fully evaluate the lasting consequences of altered sterol biosynthesis on the whole body.


Assuntos
Fitosteróis , Trazodona , Humanos , Feminino , Masculino , Camundongos , Animais , Aripiprazol , Trazodona/farmacologia , Cromatografia Líquida , Polimedicação , Espectrometria de Massas em Tandem , Colesterol , Esteróis , Encéfalo
2.
Chem Res Toxicol ; 36(4): 565-569, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36999736

RESUMO

Cannabidiol (CBD) vaping products have become widely available in the U.S. since their legalization in 2018. However, little is known about their respiratory health effects. Here we show that aerosolization of commercial CBD vaping products generates a reactive CBD quinone (CBDQ) which forms adducts with protein cysteine residues. Using click chemistry and a novel in vitro vaping product exposure system (VaPES), we further demonstrate that CBDQ forms adducts with human bronchial epithelial cell proteins including Keap1 and activates KEAP1-Nrf2 stress response pathway genes. These results suggest that vaping CBD alters protein function and induces cellular stress pathways in the lung.


Assuntos
Canabidiol , Vaping , Humanos , Benzoquinonas , Canabidiol/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução
3.
Infect Immun ; 89(8): e0014621, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34001560

RESUMO

The generation of oxidative stress is a host strategy used to control Staphylococcus aureus infections. Sulfur-containing amino acids, cysteine and methionine, are particularly susceptible to oxidation because of the inherent reactivity of sulfur. Due to the constant threat of protein oxidation, many systems evolved to protect S. aureus from protein oxidation or to repair protein oxidation after it occurs. The S. aureus peptide methionine sulfoxide reductase (Msr) system reduces methionine sulfoxide to methionine. Staphylococci have four Msr enzymes, which all perform this reaction. Deleting all four msr genes in USA300 LAC (Δmsr) sensitizes S. aureus to hypochlorous acid (HOCl) killing; however, the Δmsr strain does not exhibit increased sensitivity to H2O2 stress or superoxide anion stress generated by paraquat or pyocyanin. Consistent with increased susceptibility to HOCl killing, the Δmsr strain is slower to recover following coculture with both murine and human neutrophils than USA300 wild type. The Δmsr strain is attenuated for dissemination to the spleen following murine intraperitoneal infection and exhibits reduced bacterial burdens in a murine skin infection model. Notably, no differences in bacterial burdens were observed in any organ following murine intravenous infection. Consistent with these observations, USA300 wild-type and Δmsr strains have similar survival phenotypes when incubated with murine whole blood. However, the Δmsr strain is killed more efficiently by human whole blood. These findings indicate that species-specific immune cell composition of the blood may influence the importance of Msr enzymes during S. aureus infection of the human host.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Metionina Sulfóxido Redutases/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/imunologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Peróxido de Hidrogênio/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/imunologia , Camundongos , Viabilidade Microbiana/imunologia , Mutação , Oxirredução , Estresse Oxidativo , Staphylococcus aureus/genética
4.
ACS Pharmacol Transl Sci ; 4(2): 848-857, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860207

RESUMO

Sterol biosynthesis is a critical homeostatic mechanism of the body. Sterol biosynthesis begins during early embryonic life and continues throughout life. Many commonly used medications, prescribed >200 million times in the United States annually, have a sterol biosynthesis inhibition side effect. Using our high-throughput LC-MS/MS method, we assessed the levels of post-lanosterol sterol intermediates (lanosterol, desmosterol, and 7-dehydrocholesterol (7-DHC)) and cholesterol in 1312 deidentified serum samples from pregnant women. 302 samples showing elevated 7-DHC were analyzed for the presence of 14 medications known to inhibit the 7-dehydrocholesterol reductase enzyme (DHCR7) and increase 7-DHC. Of the 302 samples showing 7-DHC elevation, 43 had detectable levels of prescription medications with a DHCR7-inhibiting side effect. Taking more than one 7-DHC-elevating medication in specific combinations (polypharmacy) might exacerbate the effect on 7-DHC levels in pregnant women, suggesting a potentially additive or synergistic effect. As 7-DHC and 7-DHC-derived oxysterols are toxic, and as DHCR7-inhibiting medications are considered teratogens, our findings raise potential concerns regarding the use of prescription medication with a DHCR7-inhibiting side effect during pregnancy. The use of prescription medications during pregnancy is sometimes unavoidable, but choosing a medication without a DHCR7-inhibiting side effect might lead to a heathier pregnancy and prevent putatively adverse outcomes for the developing offspring.

5.
Environ Health Perspect ; 128(1): 17014, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31985273

RESUMO

BACKGROUND: Changes in cholesterol metabolism are common hallmarks of neurodevelopmental pathologies. A diverse array of genetic disorders of cholesterol metabolism support this claim as do multiple lines of research that demonstrate chemical inhibition of cholesterol biosynthesis compromises neurodevelopment. Recent work has revealed that a number of commonly used pharmaceuticals induce changes in cholesterol metabolism that are similar to changes induced by genetic disorders with devastating neurodevelopmental deficiencies. OBJECTIVES: We tested the hypothesis that common environmental toxicants may also impair cholesterol metabolism and thereby possibly contribute to neurodevelopmental toxicity. METHODS: Using high-throughput screening with a targeted lipidomic analysis and the mouse neuroblastoma cell line, Neuro-2a, the ToxCast™ chemical library was screened for compounds that impact sterol metabolism. Validation of chemical effects was conducted by assessing cholesterol biosynthesis in human induced pluripotent stem cell (hiPSC)-derived neuroprogenitors using an isotopically labeled cholesterol precursor and by monitoring product formation with UPLC-MS/MS. RESULTS: Twenty-nine compounds were identified as validated lead-hits, and four were prioritized for further study (endosulfan sulfate, tributyltin chloride, fenpropimorph, and spiroxamine). All four compounds were validated to cause hypocholesterolemia in Neuro-2a cells. The morpholine-like fungicides, fenpropimorph and spiroxamine, mirrored their Neuro-2a activity in four immortalized human cell lines and in a human neuroprogenitor model derived from hiPSCs, but endosulfan sulfate and tributyltin chloride did not. CONCLUSIONS: These data reveal the existence of environmental compounds that interrupt cholesterol biosynthesis and that methodologically hiPSC neuroprogenitor cells provide a particularly sensitive system to monitor the effect of small molecules on de novo cholesterol formation. https://doi.org/10.1289/EHP5053.


Assuntos
Poluentes Ambientais/toxicidade , Testes de Toxicidade , Animais , Colesterol/biossíntese , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Células-Tronco
6.
J Biol Chem ; 294(50): 19022-19033, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31666337

RESUMO

The lipid aldehyde 4-oxo-2-nonenal (ONE) is a highly reactive protein crosslinker derived from peroxidation of n-6 polyunsaturated fatty acids and generated together with 4-hydroxynonenal (HNE). Lipid peroxidation product-mediated crosslinking of proteins in high-density lipoprotein (HDL) causes HDL dysfunction and contributes to atherogenesis. Although HNE is relatively well-studied, the role of ONE in atherosclerosis and in modifying HDL is unknown. Here, we found that individuals with familial hypercholesterolemia (FH) had significantly higher ONE-ketoamide (lysine) adducts in HDL (54.6 ± 33.8 pmol/mg) than healthy controls (15.3 ± 5.6 pmol/mg). ONE crosslinked apolipoprotein A-I (apoA-I) on HDL at a concentration of > 3 mol ONE per 10 mol apoA-I (0.3 eq), which was 100-fold lower than HNE, but comparable to the potent protein crosslinker isolevuglandin. ONE-modified HDL partially inhibited HDL's ability to protect against lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) gene expression in murine macrophages. At 3 eq, ONE dramatically decreased apoA-I exchange from HDL, from ∼46.5 to ∼18.4% (p < 0.001). Surprisingly, ONE modification of HDL or apoA-I did not alter macrophage cholesterol efflux capacity. LC-MS/MS analysis revealed that Lys-12, Lys-23, Lys-96, and Lys-226 in apoA-I are modified by ONE ketoamide adducts. Compared with other dicarbonyl scavengers, pentylpyridoxamine (PPM) most efficaciously blocked ONE-induced protein crosslinking in HDL and also prevented HDL dysfunction in an in vitro model of inflammation. Our findings show that ONE-HDL adducts cause HDL dysfunction and are elevated in individuals with FH who have severe hypercholesterolemia.


Assuntos
Aldeídos/metabolismo , Hiperlipoproteinemia Tipo II/metabolismo , Lipoproteínas HDL/metabolismo , Lisina/metabolismo , Aldeídos/análise , Animais , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Células Cultivadas , Feminino , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Chem Res Toxicol ; 30(10): 1797-1803, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28960974

RESUMO

Reactive metabolites (RM) formed from bioactivation of drugs can covalently modify liver proteins and cause mechanism-based inactivation of major cytochrome P450 (CYP450) enzymes. Risk of bioactivation of a test compound is routinely examined as part of lead optimization efforts in drug discovery. Here we described a chemoproteomic platform to assess in vitro and in vivo bioactivation potential of drugs. This platform enabled us to determine reactivity of thousands of proteomic cysteines toward RMs of diclofenac formed in human liver microsomes and living animals. We pinpointed numerous reactive cysteines as the targets of RMs of diclofenac, including the active (heme-binding) sites on several key CYP450 isoforms (1A2, 2E1 and 3A4 for human, 2C39 and 3A11 for mouse). This general platform should be applied to other drugs, drug candidates, and xenobiotics with potential hepatoxicity, including environmental organic substances, bioactive natural products, and traditional Chinese medicine.


Assuntos
Inibidores das Enzimas do Citocromo P-450/efeitos adversos , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/efeitos adversos , Microssomos Hepáticos/efeitos dos fármacos , Proteômica , Xenobióticos/efeitos adversos , Animais , Inibidores das Enzimas do Citocromo P-450/metabolismo , Diclofenaco/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Xenobióticos/metabolismo
8.
Mol Cell Proteomics ; 16(10): 1815-1828, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28827280

RESUMO

Protein cysteinyl residues are the mediators of hydrogen peroxide (H2O2)-dependent redox signaling. However, site-specific mapping of the selectivity and dynamics of these redox reactions in cells poses a major analytical challenge. Here we describe a chemoproteomic platform to systematically and quantitatively analyze the reactivity of thousands of cysteines toward H2O2 in human cells. We identified >900 H2O2-sensitive cysteines, which are defined as the H2O2-dependent redoxome. Although redox sites associated with antioxidative and metabolic functions are consistent, most of the H2O2-dependent redoxome varies dramatically between different cells. Structural analyses reveal that H2O2-sensitive cysteines are less conserved than their redox-insensitive counterparts and display distinct sequence motifs, structural features, and potential for crosstalk with lysine modifications. Notably, our chemoproteomic platform also provides an opportunity to predict oxidation-triggered protein conformational changes. The data are freely accessible as a resource at http://redox.ncpsb.org/OXID/.


Assuntos
Cisteína/química , Peróxido de Hidrogênio/química , Proteoma/análise , Proteômica/métodos , Motivos de Aminoácidos , Linhagem Celular Tumoral , Simulação por Computador , Cisteína/análise , Células HEK293 , Células Hep G2 , Humanos , Peróxido de Hidrogênio/análise , Lisina/análise , Lisina/química , Oxirredução , Conformação Proteica , Proteoma/química
9.
Mol Cell Proteomics ; 16(10): 1789-1800, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28814509

RESUMO

4-Oxo-2-nonenal (ONE) derived from lipid peroxidation modifies nucleophiles and transduces redox signaling by its reactions with proteins. However, the molecular interactions between ONE and complex proteomes and their dynamics in situ remain largely unknown. Here we describe a quantitative chemoproteomic analysis of protein adduction by ONE in cells, in which the cellular target profile of ONE is mimicked by its alkynyl surrogate. The analyses reveal four types of ONE-derived modifications in cells, including ketoamide and Schiff-base adducts to lysine, Michael adducts to cysteine, and a novel pyrrole adduct to cysteine. ONE-derived adducts co-localize and exhibit crosstalk with many histone marks and redox sensitive sites. All four types of modifications derived from ONE can be reversed site-specifically in cells. Taken together, our study provides much-needed mechanistic insights into the cellular signaling and potential toxicities associated with this important lipid derived electrophile.


Assuntos
Aldeídos/metabolismo , Proteoma/análise , Proteômica/métodos , Aldeídos/análise , Amidas/análise , Amidas/química , Linhagem Celular , Cisteína/análise , Cisteína/química , Código das Histonas , Humanos , Peroxidação de Lipídeos , Lisina/análise , Lisina/química , Oxirredução , Proteoma/química , Pirróis/análise , Pirróis/química , Bases de Schiff/análise , Bases de Schiff/química
10.
Toxicol Sci ; 151(2): 261-70, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26919959

RESUMO

In this study, we aim to identify environmental molecules that can inhibit cholesterol biosynthesis, potentially leading to the same biochemical defects as observed in cholesterol biosynthesis disorders, which are often characterized by congenital malformations and developmental delay. Using the Distributed Structure-Searchable Toxicity (DSSTox) Database Network developed by EPA, we first carried out in silico screening of environmental molecules that display structures similar to AY9944, a known potent inhibitor of 3ß-hydroxysterol-Δ(7)-reductase (DHCR7)-the last step of cholesterol biosynthesis. Molecules that display high similarity to AY9944 were subjected to test in mouse and human neuroblastoma cells for their effectiveness in inhibiting cholesterol biosynthesis by analyzing cholesterol and its precursor using gas chromatography-mass spectrometry. We found that a common disinfectant mixture, benzalkonium chlorides (BACs), exhibits high potency in inhibiting DHCR7, as suggested by greatly elevated levels of the cholesterol precursor, 7-dehydrocholesterol (7-DHC). Subsequent structure-activity studies suggested that the potency of BACs as Dhcr7 inhibitors decrease with the length of their hydrocarbon chain: C10 > C12 ≫ C14 > C16. Real-time qPCR analysis revealed upregulation of the genes related to cholesterol biosynthesis and downregulation of the genes related to cholesterol efflux, suggesting a feedback response to the inhibition. Furthermore, an oxidative metabolite of 7-DHC that was previously identified as a biomarker in vivo was also found in cells exposed to BACs by liquid chromatography-mass spectrometry. Our findings suggest that certain environmental molecules could potently inhibit cholesterol biosynthesis, which could be a new link between environment and developmental disorders.


Assuntos
Anti-Infecciosos Locais/toxicidade , Compostos de Benzalcônio/toxicidade , Colesterol/biossíntese , Poluentes Ambientais/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Anti-Infecciosos Locais/química , Compostos de Benzalcônio/química , Linhagem Celular Tumoral , Bases de Dados Factuais , Relação Dose-Resposta a Droga , Poluentes Ambientais/química , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Estrutura Molecular , Neurônios/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Medição de Risco , Relação Estrutura-Atividade , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/metabolismo , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/farmacologia
11.
Nat Protoc ; 10(7): 1022-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26086405

RESUMO

Protein S-sulfenylation is the reversible oxidative modification of cysteine thiol groups to form cysteine S-sulfenic acids. Mapping the specific sites of protein S-sulfenylation onto complex proteomes is crucial to understanding the molecular mechanisms controlling redox signaling and regulation. This protocol describes global, in situ, site-specific analysis of protein S-sulfenylation using sulfenic acid-specific chemical probes and mass spectrometry (MS)-based proteomics. The major steps in this protocol are as follows: (i) optimization of conditions for selective labeling of cysteine S-sulfenic acids in intact cells with the commercially available dimedone-based probe, DYn-2; (ii) tagging the modified cysteines with a functionalized biotin reagent containing a cleavable linker via Cu(I)-catalyzed azide-alkyne cycloaddition reaction; (iii) enrichment of the biotin-tagged tryptic peptides with streptavidin; (iv) liquid chromatography-tandem MS (LC-MS/MS)-based shotgun proteomics; and (v) computational data analysis. We also outline strategies for quantitative analysis of this modification in cells responding to redox perturbations and discuss special issues pertaining to experimental design of thiol redox studies. Our chemoproteomic platform should be broadly applicable to the investigation of other bio-orthogonal chemically engineered post-translational modifications. The entire analysis protocol takes ∼1 week to complete.


Assuntos
Proteínas/metabolismo , Proteômica/métodos , Linhagem Celular , Humanos , Oxirredução , Processamento de Proteína Pós-Traducional , Proteínas/química , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo , Espectrometria de Massas em Tandem
12.
Chem Res Toxicol ; 28(4): 817-27, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25739016

RESUMO

Products of oxidative damage to lipids include 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), both of which are cytotoxic electrophiles. ONE reacts more rapidly with nucleophilic amino acid side chains, resulting in covalent protein adducts, including residue-residue cross-links. Previously, we demonstrated that peptidylprolyl cis/trans isomerase A1 (Pin1) was highly susceptible to adduction by HNE and that the catalytic cysteine (Cys113) was the preferential site of modification. Here, we show that ONE also preferentially adducts Pin1 at the catalytic Cys but results in a profoundly different modification. Results from experiments using purified Pin1 incubated with ONE revealed the principal product to be a Cys-Lys pyrrole-containing cross-link between the side chains of Cys113 and Lys117. In vitro competition assays between HNE and ONE demonstrate that ONE reacts more rapidly than HNE with Cys113. Exposure of RKO cells to alkynyl-ONE (aONE) followed by copper-mediated click chemistry and streptavidin purification revealed that Pin1 is also modified by ONE in cells. Analysis of the Pin1 crystal structure reveals that Cys113 and Lys117 are oriented toward each other in the active site, facilitating formation of an ONE cross-link.


Assuntos
Aldeídos/química , Reagentes de Ligações Cruzadas/química , Peptidilprolil Isomerase/química , Domínio Catalítico , Linhagem Celular Tumoral , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Estresse Oxidativo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Anal Chem ; 87(5): 2535-41, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25654326

RESUMO

Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.


Assuntos
Aldeídos/química , Cromatografia Líquida/métodos , Neoplasias Colorretais/metabolismo , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/química , Espectrometria de Massas em Tandem/métodos , Alquilação , Reagentes de Ligações Cruzadas/química , Humanos , Processamento de Proteína Pós-Traducional , Células Tumorais Cultivadas
14.
Chem Res Toxicol ; 27(10): 1757-68, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25185119

RESUMO

Cholesterol undergoes ozonolysis to afford a variety of oxysterol products, including cholesterol-5,6-epoxide (CholEp) and the isomeric aldehydes secosterol A (seco A) and secosterol B (seco B). These oxysterols display numerous important biological activities, including protein adduction; however, much remains to be learned about the identity of the reactive species and the range of proteins modified by these oxysterols. Here, we synthesized alkynyl derivatives of cholesterol-derived oxysterols and employed a straightforward detection method to establish secosterols A and B as the most protein-reactive of the oxysterols tested. Model adduction studies with an amino acid, peptides, and proteins provide evidence for the potential role of secosterol dehydration products in protein adduction. Hydrophobic separation methods-Folch extraction and solid phase extraction (SPE)-were successfully applied to enrich oxysterol-adducted peptide species, and LC-MS/MS analysis of a model peptide-seco adduct revealed a unique fragmentation pattern (neutral loss of 390 Da) for that species. Coupling a hydrophobic enrichment method with proteomic analysis utilizing characteristic fragmentation patterns facilitates the identification of secosterol-modified peptides and proteins in an adducted protein. More broadly, these improved enrichment methods may give insight into the role of oxysterols and ozone exposure in the pathogenesis of a variety of diseases, including atherosclerosis, Alzheimer's disease, Parkinson's disease, and asthma.


Assuntos
Colesterol/química , Ozônio/química , Peptídeos/química , Proteínas/química , Aldeídos/química , Sequência de Aminoácidos , Biotina/química , Colesterol/análogos & derivados , Cromatografia Líquida de Alta Pressão , Química Click , Citocromos c/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Dados de Sequência Molecular , Peptídeos/análise , Albumina Sérica/química , Extração em Fase Sólida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estreptavidina/química
15.
J Am Chem Soc ; 136(34): 11864-6, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25099620

RESUMO

Lipid electrophiles modify cellular targets, altering their function. Here, we describe histones as major targets for modification by 4-oxo-2-nonenal, resulting in a stable Lys modification structurally analogous to other histone Lys acylations. Seven adducts were identified in chromatin isolated from intact cells: four 4-ketoamides to Lys and three Michael adducts to His. A 4-ketoamide adduct residing at H3K27 was identified in stimulated macrophages. Modification of histones H3 and H4 prevented nucleosome assembly.


Assuntos
Aldeídos/química , Adutos de DNA/química , Epigênese Genética/fisiologia , Histonas/química , Estresse Oxidativo/fisiologia , Processamento de Proteína Pós-Traducional , Acilação , Aldeídos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Adutos de DNA/genética , Adutos de DNA/metabolismo , Epigênese Genética/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/química , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Estresse Oxidativo/genética
16.
J Am Chem Soc ; 136(32): 11529-39, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25034362

RESUMO

Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.


Assuntos
Ácido Araquidônico/química , Carbono/química , Ácidos Graxos Insaturados/química , Ácido Linoleico/química , Lipídeos/química , Oxigênio/química , Animais , Araquidonato 15-Lipoxigenase/química , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Ácidos Graxos/química , Radicais Livres , Ácidos Hidroxieicosatetraenoicos/química , Lipoxigenases/química , Substâncias Macromoleculares , Macrófagos/metabolismo , Camundongos , Glycine max/enzimologia , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem
17.
Mol Cell Proteomics ; 13(3): 849-59, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24429493

RESUMO

Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions.


Assuntos
Elétrons , Lipídeos/química , Proteínas/metabolismo , Proteoma/metabolismo , Aldeídos/metabolismo , Alquilação , Linhagem Celular , Glutationa/metabolismo , Humanos , Mapas de Interação de Proteínas
18.
J Lipid Res ; 54(10): 2842-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23828810

RESUMO

Lipid modifications aid in regulating (and misregulating) protein function and localization. However, efficient methods to screen for a lipid's ability to modify proteins are not readily available. We present a strategy to identify protein-reactive lipids and apply it to a neurodevelopmental disorder, Smith-Lemli-Opitz syndrome (SLOS). Alkynyl surrogates were synthesized for polyunsaturated fatty acids, phospholipids, cholesterol, 7-dehydrocholesterol (7-DHC), and a 7-DHC-derived oxysterol. To probe for protein-reactive lipids, we used click chemistry to biotinylate the alkynyl tag and detected the lipid-adducted proteins with streptavidin Western blotting. In Neuro2a cells, the trend in amount of protein adduction followed known rates of lipid peroxidation (7-DHC >> arachidonic acid > linoleic acid >> cholesterol), with alkynyl-7-DHC producing the most adduction among alkynyl lipids. 7-DHC reductase-deficient cells, which cannot properly metabolize 7-DHC, exhibited significantly more alkynyl-7-DHC-protein adduction than control cells. Model studies demonstrated that a 7-DHC peroxidation product covalently modifies proteins. We hypothesize that 7-DHC generates electrophiles that can modify the proteome, contributing to SLOS's complex pathology. These probes and methods would allow for analysis of lipid-modified proteomes in SLOS and other disorders exhibiting 7-DHC accumulation. More broadly, the alkynyl lipid library would facilitate exploration of lipid peroxidation's role in specific biological processes in numerous diseases.


Assuntos
Processamento de Proteína Pós-Traducional , Síndrome de Smith-Lemli-Opitz/metabolismo , Linhagem Celular Tumoral , Citocromos c/química , Citocromos c/metabolismo , Desidrocolesteróis/química , Desidrocolesteróis/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Lipoilação , Oxirredução , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Proteoma/metabolismo , Síndrome de Smith-Lemli-Opitz/diagnóstico
19.
J Biol Chem ; 288(28): 20477-87, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23723068

RESUMO

Phosphatidic acid (PA) is a lipid second messenger located at the intersection of several lipid metabolism and cell signaling events including membrane trafficking, survival, and proliferation. Generation of signaling PA has long been primarily attributed to the activation of phospholipase D (PLD). PLD catalyzes the hydrolysis of phosphatidylcholine into PA. A variety of both receptor-tyrosine kinase and G-protein-coupled receptor stimulations have been shown to lead to PLD activation and PA generation. This study focuses on profiling the PA pool upon P2Y6 receptor signaling manipulation to determine the major PA producing enzymes. Here we show that PLD, although highly active, is not responsible for the majority of stable PA being produced upon UDP stimulation of the P2Y6 receptor and that PA levels are tightly regulated. By following PA flux in the cell we show that PLD is involved in an initial increase in PA upon receptor stimulation; however, when PLD is blocked, the cell compensates by increasing PA production from other sources. We further delineate the P2Y6 signaling pathway showing that phospholipase Cß3 (PLCß3), PLCδ1, DGKζ and PLD are all downstream of receptor activation. We also show that DGKζ is a novel negative regulator of PLD activity in this system that occurs through an inhibitory mechanism with PKCα. These results further define the downstream events resulting in PA production in the P2Y6 receptor signaling pathway.


Assuntos
Ácidos Fosfatídicos/biossíntese , Fosfatidilcolinas/metabolismo , Fosfolipase D/metabolismo , Receptores Purinérgicos P2/metabolismo , 1-Butanol/farmacologia , Western Blotting , Linhagem Celular Tumoral , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Hidrólise , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Espectrometria de Massas , Modelos Biológicos , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/genética , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Interferência de RNA , Receptores Purinérgicos P2/genética , Transdução de Sinais/efeitos dos fármacos , Difosfato de Uridina/farmacologia
20.
Chem Res Toxicol ; 24(3): 357-70, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21291287

RESUMO

Electrophile-mediated disruption of cell signal-ing is involved in the pathogenesis of several diseases including atherosclerosis and cancer. Diffusible and membrane bound lipid electrophiles are known to modify DNA and protein substrates and modulate cellular pathways including ER stress, antioxidant response, DNA damage, heat shock, and apoptosis. Herein we report on a structure-activity relationship for several electrophilic analogues of 4-hydroxynonenal (HNE) and 4-oxononenal (ONE) with regard to toxicity and anti-inflammatory activity. The analogues studied were the oxidation products of HNE and ONE, HNEA/ONEA, the in vivo hydrolysis products of oxidized phosphatidylcholine, COOH-HNE/COOH-ONE, and their methyl esters, COOMe-HNE/ONE. The reactivity of each compound toward N-acetylcysteine was determined and compared to the toxicity toward a human colorectal carcinoma cell line (RKO) and a human monocytic leukemia cell line (THP-1). Further analysis was performed in differentiated THP-1 macrophages to assess changes in macrophage activation and pro-inflammatory signaling in response to each lipid electrophile. HNE/ONE analogues inhibited THP-1 macrophage production of the pro-inflammatory cytokines, IL-6, IL-1ß, and TNFα, after lipopolysaccharide (LPS)/IFNγ activation. Inhibition of cytokine production was observed at submicromolar concentrations of several analogues with as little as 30 min of exposure. Phagocytosis of fluorescent beads was also inhibited by lipid electrophile treatment. Lipid electrophiles related to HNE/ONE are both toxic and anti-inflammatory, but the anti-inflammatory effects in human macrophages are observed at nontoxic concentrations. Neither toxicity nor anti-inflammatory activity are strongly correlated to the reactivity of the model nucleophile, N-acetylcysteine.


Assuntos
Aldeídos/química , Aldeídos/toxicidade , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Difusão , Humanos , Hidrólise , Interferon gama/farmacologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Peroxidação de Lipídeos , Lipopolissacarídeos/toxicidade , Oxirredução , Fagocitose , Fosfatidilcolinas/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA