Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Adv Cancer Res ; 152: 103-177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34353436

RESUMO

Metabolism is an important part of tumorigenesis as well as progression. The various cancer metabolism pathways, such as glucose metabolism and glutamine metabolism, directly regulate the development and progression of cancer. The pathways by which the cancer cells rewire their metabolism according to their needs, surrounding environment and host tissue conditions are an important area of study. The regulation of these metabolic pathways is determined by various oncogenes, tumor suppressor genes, as well as various constituent cells of the tumor microenvironment. Expanded studies on metabolism will help identify efficient biomarkers for diagnosis and strategies for therapeutic interventions and countering ways by which cancers may acquire resistance to therapy.


Assuntos
Neoplasias , Transformação Celular Neoplásica , Humanos , Redes e Vias Metabólicas , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016751

RESUMO

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Interleucina-1beta/genética , Neoplasias Pulmonares/tratamento farmacológico , Oxidiazóis/farmacologia , Pirimidinas/farmacologia , Sinteninas/genética , Animais , Antineoplásicos/síntese química , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocina CCL11/genética , Quimiocina CCL11/imunologia , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Oxidiazóis/síntese química , Pirimidinas/síntese química , Transdução de Sinais , Sinteninas/antagonistas & inibidores , Sinteninas/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Adv Cancer Res ; 150: 147-208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33858596

RESUMO

Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.


Assuntos
Autofagia/fisiologia , Senescência Celular/fisiologia , Células-Tronco Neoplásicas/fisiologia , Células-Tronco/fisiologia , Envelhecimento/fisiologia , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Neoplásicas/patologia , Estresse Fisiológico/fisiologia
4.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008495

RESUMO

Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.


Assuntos
Interleucinas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Morte Celular/fisiologia , Humanos , Melanoma/metabolismo
5.
Trends Cell Biol ; 30(12): 967-978, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33160818

RESUMO

The comparison of fitness between cells leads to the elimination of less competent cells in the presence of more competent neighbors via cell competition (CC). This phenomenon has been linked with several cancer-related genes and thus may play an important role in cancer. Various processes are involved in the regulation of tumor initiation and growth, including tumor hypoxia, clonal stem cell selection, and immune cell response, all of which have been recently shown to have a potential connection with the mechanisms involved in CC. This review aims to unravel the relation between these processes and competitive cell interactions and how this affects disease progression.


Assuntos
Competição entre as Células , Evolução Clonal , Hipóxia Tumoral , Animais , Humanos , Linfonodos/patologia , Células-Tronco/metabolismo , Microambiente Tumoral
6.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165952, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841734

RESUMO

Autophagy can either be cytoprotective or promote cell death in a context-dependent manner in response to stress. How autophagy leads to autophagy dependent cell death requires further clarification. In this study, we document a nonlinear roller coaster form of autophagy oscillation when cells are subjected to different stress conditions. Serum starvation induces an initial primary autophagic peak at 6 h, that helps to replenish cells with de novo fluxed nutrients, but protracted stress lead to a secondary autophagic peak around 48 h. Time kinetic studies indicate that the primary autophagic peak is reversible, whereas the secondary autophagic peak is irreversible and leads to cell death. Key players involved in different stages of autophagy including initiation, elongation and degradation during this oscillatory sequence were identified. A similar molecular pattern was intensified under apoptosis-deficient conditions. mTOR was the central molecule regulating this autophagic activity, and upon knockdown a steady increase of autophagy without any non-linear fluctuation was evident. An unbiased proteome screening approach was employed to identify the autophagy molecules potentially regulating these autophagic peaks. Our proteomics analysis has identified Annexin A2 as a stress-induced protein to implicate in autophagy fluctuation and its deficiency reduced autophagy. Moreover, we report that mTOR in its phosphorylated condition interacts with Annexin A2 to induce autophagy fluctuation by altering its cellular localization. The work highlights the molecular mechanism of a mTOR-dependent roller coaster fluctuation of autophagy and autophagy dependent cell death during prolong stress.


Assuntos
Anexina A2/metabolismo , Autofagia , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Células A549 , Células HeLa , Humanos , Fosforilação , Células Tumorais Cultivadas
7.
Adv Cancer Res ; 147: 161-188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32593400

RESUMO

The Epidermal Growth Factor Receptor (EGFR) is frequently expressed at elevated levels in different forms of cancer and expression often correlates positively with cancer progression and poor prognosis. Different mutant forms of this protein also contribute to cancer heterogeneity. A constitutively active form of EGFR, EGFRvIII is one of the most important variants. EGFR is responsible for the maintenance and functions of cancer stem cells (CSCs), including stemness, metabolism, immunomodulatory-activity, dormancy and therapy-resistance. EGFR regulates these pathways through several signaling cascades, and often cooperates with other RTKs to exert further control. Inhibitors of EGFR have been extensively studied and display some anticancer efficacy. However, CSCs can also acquire resistance to EGFR inhibitors making effective therapy even more difficult. To ameliorate this limitation of EGFR inhibitors when used as single agents, it may be of value to simultaneously combine multiple EGFR inhibitors or use EGFR inhibitors with regulators of other important cancer phenotype regulating molecules, such as STAT3, or involved in important processes such as DNA repair. These combinatorial approaches require further experimental confirmation, but if successful would expand and improve therapeutic outcomes employing EGFR inhibitors as one arm of the therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Progressão da Doença , Receptores ErbB/genética , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosforilação , Transdução de Sinais
8.
Pharmacol Res ; 155: 104695, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061839

RESUMO

The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.


Assuntos
Metástase Neoplásica/genética , Neoplasias/terapia , Sinteninas/genética , Animais , Humanos , Neoplasias/genética , Neoplasias/patologia
9.
Semin Cancer Biol ; 66: 140-154, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356866

RESUMO

Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/fisiologia , Autofagia/fisiologia , Interleucinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Morte Celular/fisiologia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Neoplasias/patologia
10.
Cancers (Basel) ; 12(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878027

RESUMO

Despite some progress, treating advanced prostate cancer remains a major clinical challenge. Recent studies have shown that prostate cancer can originate from undifferentiated, rare, stem cell-like populations within the heterogeneous tumor mass, which play seminal roles in tumor formation, maintenance of tumor homeostasis and initiation of metastases. These cells possess enhanced propensity toward chemoresistance and may serve as a prognostic factor for prostate cancer recurrence. Despite extensive studies, selective targeted therapies against these stem cell-like populations are limited and more detailed experiments are required to develop novel targeted therapeutics. We now show that MDA-9/Syntenin/SDCBP (MDA-9) is a critical regulator of survival, stemness and chemoresistance in prostate cancer stem cells (PCSCs). MDA-9 regulates the expression of multiple stem-regulatory genes and loss of MDA-9 causes a complete collapse of the stem-regulatory network in PCSCs. Loss of MDA-9 also sensitizes PCSCs to multiple chemotherapeutics with different modes of action, such as docetaxel and trichostatin-A, suggesting that MDA-9 may regulate multiple drug resistance. Mechanistically, MDA-9-mediated multiple drug resistance, stemness and survival are regulated in PCSCs through activation of STAT3. Activated STAT3 regulates chemoresistance in PCSCs through protective autophagy as well as regulation of MDR1 on the surface of the PCSCs. We now demonstrate that MDA-9 is a critical regulator of PCSC survival and stemness via exploiting the inter-connected STAT3 and c-myc pathways.

11.
Oncotarget ; 10(49): 5103-5117, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31489119

RESUMO

Melanoma differentiation associated gene-7 (mda-7/IL-24) is a member of the IL-10 family of cytokines, with ubiquitous direct and "bystander" tumor-selective killing properties. MDA-7/IL-24 protein binds distinct type II cytokine heterodimeric receptor complexes, IL-20R1/IL-20R2, IL-22R1/IL-20R1 and IL-22R1/IL-20R2. Recombinant MDA-7/IL-24 protein induces endogenous mda-7/IL-24 expression in a receptor-dependent manner; since A549 cells that lack a complete set of cognate receptors are not responsive to exogenous protein. The mechanism of MDA-7/IL-24 ligand-receptor biology is not well understood. We explored the interaction of MDA-7/IL-24 with its' receptors and the consequences of ligand-receptor docking. Using both pharmacological and genetic approaches we demonstrate that MDA-7/IL-24 internalization employs the clathrin-mediated endocytic pathway leading to degradation of receptors via the lysosomal/ubiquitin proteosomal pathway. This clathrin-mediated endocytosis is dynamin-dependent. This study resolves a novel mechanism of MDA-7/IL-24 protein "bystander" function, which involves receptor/protein-mediated internalization and receptor degradation.

12.
Mol Cancer Ther ; 18(11): 1997-2007, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31345950

RESUMO

Metastasis is the primary determinant of death in patients with diverse solid tumors and MDA-9/Syntenin (SDCBP), a pro-metastatic and pro-angiogenic gene, contributes to this process. Recently, we documented that by physically interacting with IGF-1R, MDA-9/Syntenin activates STAT3 and regulates prostate cancer pathogenesis. These observations firmly established MDA-9/Syntenin as a potential molecular target in prostate cancer. MDA-9/Syntenin contains two highly homologous PDZ domains predicted to interact with a plethora of proteins, many of which are central to the cancerous process. An MDA-9/Syntenin PDZ1 domain-targeted small molecule (PDZ1i) was previously developed using fragment-based drug discovery (FBDD) guided by NMR spectroscopy and was found to be well-tolerated in vivo, had significant half-life (t 1/2 = 9 hours) and displayed substantial anti-prostate cancer preclinical in vivo activity. PDZ1i blocked tumor cell invasion and migration in vitro, and metastasis in vivo Hence, we demonstrate that PDZ1i an MDA-9/Syntenin PDZ1 target-specific small-molecule inhibitor displays therapeutic potential for prostate and potentially other cancers expressing elevated levels of MDA-9/Syntenin.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias da Próstata/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Sinteninas/química , Animais , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Domínios Proteicos , Receptor IGF Tipo 1/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Sinteninas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Proc Natl Acad Sci U S A ; 116(12): 5687-5692, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842276

RESUMO

Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a multifunctional cytokine displaying broad-spectrum anticancer activity in vitro or in vivo in preclinical animal cancer models and in a phase 1/2 clinical trial in patients with advanced cancers. mda-7/IL-24 targets specific miRNAs, including miR-221 and miR-320, for down-regulation in a cancer-selective manner. We demonstrate that mda-7/IL-24, administered through a replication incompetent type 5 adenovirus (Ad.mda-7) or with His-MDA-7/IL-24 protein, down-regulates DICER, a critical regulator in miRNA processing. This effect is specific for mature miR-221, as it does not affect Pri-miR-221 expression, and the DICER protein, as no changes occur in other miRNA processing cofactors, including DROSHA, PASHA, or Argonaute. DICER is unchanged by Ad.mda-7/IL-24 in normal immortal prostate cells, whereas Ad.mda-7 down-regulates DICER in multiple cancer cells including glioblastoma multiforme and prostate, breast, lung, and liver carcinoma cells. MDA-7/IL-24 protein down-regulates DICER expression through canonical IL-20/IL-22 receptors. Gain- and loss-of-function studies confirm that overexpression of DICER rescues deregulation of miRNAs by mda-7/IL-24, partially rescuing cancer cells from mda-7/IL-24-mediated cell death. Stable overexpression of DICER in cancer cells impedes Ad.mda-7 or His-MDA-7/IL-24 inhibition of cell growth, colony formation, PARP cleavage, and apoptosis. In addition, stable overexpression of DICER renders cancer cells more resistant to Ad.mda-7 inhibition of primary and secondary tumor growth. MDA-7/IL-24-mediated regulation of DICER is reactive oxygen species-dependent and mediated by melanogenesis-associated transcription factor. Our research uncovers a distinct role of mda-7/IL-24 in the regulation of miRNA biogenesis through alteration of the MITF-DICER pathway.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interleucinas/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Ribonuclease III/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , RNA Helicases DEAD-box/biossíntese , RNA Helicases DEAD-box/genética , Regulação para Baixo , Genes Supressores de Tumor , Humanos , Interleucinas/genética , Masculino , Camundongos , Camundongos Nus , MicroRNAs/biossíntese , Fator de Transcrição Associado à Microftalmia/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Ribonuclease III/biossíntese , Ribonuclease III/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Adv Cancer Res ; 141: 43-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691685

RESUMO

Dormancy occurs when cells remain viable but stop proliferating. When most of a cancer population undergoes this phenomenon, the result is called tumor dormancy, and when a single cancer cell undergoes this process, it is termed quiescence. Cancer stem cells (CSCs) share several overlapping characteristics and signaling pathways with dormant cancer cells, including therapy resistance, and an ability to metastasize and evade the immune system. Cancer cells can be broadly grouped into dormancy-competent CSCs (DCCs), cancer-repopulating cells (CRCs), dormancy-incompetent CSCs and disseminated tumor cells (DTCs). The settings in which cancer cells exploit the dormancy phase to survive and adapt are: (i) primary cancer dormancy; (ii) metastatic dormancy; (iii) therapy-induced dormancy; and (iv) immunologic dormancy. Dormancy, therapy resistance and plasticity of CSCs are fundamentally interconnected processes mediated through mechanisms involving reversible genetic alterations. Niches including metastatic, bone marrow, and perivascular are known to harbor dormant cancer cells. Mechanisms of dormancy induction are complex and multi-factorial and can involve angiogenic switching, addictive oncogene inhibition, immunoediting, anoikis, therapy, autophagy, senescence, epigenetic, and biophysical regulation. Therapy can have opposing effects on cancer cells with respect to dormancy; some therapies can induce dormancy, while others can reactivate dormant cells. There is a lack of consensus relative to the value of therapy-induced dormancy, i.e., some researchers view dormancy induction as a beneficial strategy as it can lead to metastasis inhibition, while others argue that reactivating dormant cancer cells and then eliminating them through therapy are a better approach. More focused investigations of intrinsic cell kinetics and environmental dynamics that promote and maintain cancer cells in a dormant state, and the long-term consequences of dormancy are critical for improving current therapeutic treatment outcomes.


Assuntos
Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Nicho de Células-Tronco , Microambiente Tumoral
16.
Autophagy ; 14(10): 1845-1846, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30118375

RESUMO

Glioblastoma multiforme (GBM) is a frequent and aggressive glial tumor, containing a small population of therapy-resistant cells, glioma stem cells (GSCs). Current dogma suggests that tumors regrow from GSCs, and these cells contribute to therapy resistance, poor prognosis, and recurrence; highlighting the importance of GSCs in glioma pathophysiology and therapeutic targeting. Macroautophagy/autophagy-based cellular homeostasis can be changed from pro-survival to pro-cell death by modulating SDCBP/MDA-9/Syntenin (syndecan binding protein)-mediated signaling. In nonadherent conditions, GSCs display protective autophagy and anoikis-resistance, which correlates with expression of SDCBP/MDA-9/Syntenin. Conversely, SDCBP/MDA-9/Syntenin silencing induces autophagic death in GSCs, indicating that SDCBP/MDA-9/Syntenin regulates protective autophagy in GSCs under anoikis conditions. This process is mediated through phosphorylation of the anti-apoptotic protein BCL2 accompanied with suppression of high levels of autophagic proteins (ATG5, LAMP1, LC3B) through EGFR signaling. SDCBP/MDA-9/Syntenin-mediated regulation of BCL2 and EGFR phosphorylation is achieved through PTK2/FAK and PRKC/PKC signaling. When SDCBP/MDA-9/Syntenin is absent, this protective mechanism is deregulated, leading to highly elevated and sustained levels of autophagy and consequently decreased cell survival. Our recent paper reveals a novel functional link between SDCBP/MDA-9/Syntenin expression and protective autophagy in GSCs. These new insights into SDCBP/MDA-9/Syntenin-mediated regulation and maintenance of GSCs present leads for developing innovative combinatorial cancer therapies.


Assuntos
Autofagia , Glioma , Anoikis , Linhagem Celular Tumoral , Humanos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Sinteninas
17.
Mol Cancer Ther ; 17(9): 1951-1960, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29934341

RESUMO

Prostate cancer is a principal cause of cancer-associated morbidity in men. Although 5-year survival of patients with localized prostate cancer approaches 100%, survival decreases precipitously after metastasis. Bone is the preferred site for disseminated prostate cancer cell colonization, altering the equilibrium of bone homeostasis resulting in weak and fragile bones. Currently, no curative options are available for prostate cancer bone metastasis. Melanoma differentiation associated gene-7 (MDA-7)/IL24 is a well-studied cytokine established as a therapeutic in a wide array of cancers upon delivery as a gene therapy. In this study, we explored the potential anticancer properties of MDA-7/IL24 delivered as a recombinant protein. Using bone metastasis experimental models, animals treated with recombinant MDA-7/IL24 had significantly less metastatic lesions in their femurs as compared with controls. The inhibitory effects of MDA-7/IL24 on bone metastasis resulted from prostate cancer-selective killing and inhibition of osteoclast differentiation, which is necessary for bone resorption. Gain- and loss-of-function genetic approaches document that prosurvival Akt and Mcl-1 pathways are critically important in the antibone metastatic activity of MDA-7/IL24. Our previous findings showed that MDA-7/IL24 gene therapy plus Mcl-1 inhibitors cooperate synergistically. Similarly, an Mcl-1 small-molecule inhibitor synergized with MDA-7/IL24 and induced robust antibone metastatic activity. These results expand the potential applications of MDA-7/IL24 as an anticancer molecule and demonstrate that purified recombinant protein is nontoxic in preclinical animal models and has profound inhibitory effects on bone metastasis, which can be enhanced further when combined with an Mcl-1 inhibitory small molecule. Mol Cancer Ther; 17(9); 1951-60. ©2018 AACR.


Assuntos
Neoplasias Ósseas/imunologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/imunologia , Neoplasias da Próstata/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Recombinantes/imunologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Terapia Genética/métodos , Humanos , Interleucinas/genética , Interleucinas/imunologia , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Proc Natl Acad Sci U S A ; 115(22): 5768-5773, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760085

RESUMO

Glioma stem cells (GSCs) comprise a small subpopulation of glioblastoma multiforme cells that contribute to therapy resistance, poor prognosis, and tumor recurrence. Protective autophagy promotes resistance of GSCs to anoikis, a form of programmed cell death occurring when anchorage-dependent cells detach from the extracellular matrix. In nonadherent conditions, GSCs display protective autophagy and anoikis-resistance, which correlates with expression of melanoma differentiation associated gene-9/Syntenin (MDA-9) (syndecan binding protein; SDCBP). When MDA-9 is suppressed, GSCs undergo autophagic death supporting the hypothesis that MDA-9 regulates protective autophagy in GSCs under anoikis conditions. MDA-9 maintains protective autophagy through phosphorylation of BCL2 and by suppressing high levels of autophagy through EGFR signaling. MDA-9 promotes these changes by modifying FAK and PKC signaling. Gain-of-function and loss-of-function genetic approaches demonstrate that MDA-9 regulates pEGFR and pBCL2 expression through FAK and pPKC. EGFR signaling inhibits autophagy markers (ATG5, Lamp1, LC3B), helping to maintain protective autophagy, and along with pBCL2 maintain survival of GSCs. In the absence of MDA-9, this protective mechanism is deregulated; EGFR no longer maintains protective autophagy, leading to highly elevated and sustained levels of autophagy and consequently decreased cell survival. In addition, pBCL2 is down-regulated in the absence of MDA-9, leading to cell death in GSCs under conditions of anoikis. Our studies confirm a functional link between MDA-9 expression and protective autophagy in GSCs and show that inhibition of MDA-9 reverses protective autophagy and induces anoikis and cell death in GSCs.


Assuntos
Anoikis/genética , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Sinteninas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Humanos , Sinteninas/genética , Células Tumorais Cultivadas
19.
Adv Cancer Res ; 138: 213-237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551128

RESUMO

The incidence of melanoma has continued to increase over the past 30 years. Hence, developing effective therapies to treat both primary and metastatic melanoma are essential. While advances in targeted therapy and immunotherapy have provided novel therapeutic options to treat melanoma, gene therapy may provide additional strategies for the treatment of metastatic melanoma clinically. This review focuses upon the challenges and opportunities that gene therapy provides for targeting melanoma. We begin with a discussion of the various gene therapy targets which are relevant to melanoma. Next, we explore the gene therapy clinical trials that have been conducted for treating melanoma. Finally, challenges faced in gene therapy as well as combination therapies for targeting melanoma, which may circumvent these obstacles, will be discussed. Targeted combination gene therapy strategies hold significant promise for developing the most effective therapeutic outcomes, while reducing the toxicity to noncancerous cells, and would integrate the patient's immune system to diminish melanoma progression. Next-generation vectors designed to embody required safety profiles and "theranostic" attributes, combined with immunotherapeutic strategies would be critical in achieving beneficial management and therapeutic outcomes in melanoma patients.


Assuntos
Terapia Genética , Vetores Genéticos/administração & dosagem , Melanoma/terapia , Proteínas de Neoplasias/genética , Animais , Humanos , Melanoma/genética
20.
Cancer Res ; 78(11): 2852-2863, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29572229

RESUMO

Although prostate cancer is clinically manageable during several stages of progression, survival is severely compromised once cells invade and metastasize to distant organs. Comprehending the pathobiology of invasion is required for developing efficacious targeted therapies against metastasis. Based on bioinformatics data, we predicted an association of melanoma differentiation-associated gene-9 [syntenin, or syndecan binding protein (SDCBP)] in prostate cancer progression. Using tissue samples from various Gleason stage prostate cancer patients with adjacent normal tissue, a series of normal prostate and prostate cancer cell lines (with differing tumorigenic/metastatic properties), mda-9/syntenin-manipulated variants (including loss-of-function and gain-of-function cell lines), and CRISPR/Cas9 stable MDA-9/Syntenin knockout cells, we now confirm the relevance of and dependence on MDA-9/syntenin in prostate cancer invasion. MDA-9/Syntenin physically interacted with insulin-like growth factor-1 receptor following treatment with insulin-like growth factor binding protein-2 (IGFBP2), regulating downstream signaling processes that enabled STAT3 phosphorylation. This activation enhanced expression of MMP2 and MMP9, two established enzymes that positively regulate invasion. In addition, MDA-9/syntenin-mediated upregulation of proangiogenic factors including IGFBP2, IL6, IL8, and VEGFA also facilitated migration of prostate cancer cells. Collectively, our results draw attention to MDA-9/Syntenin as a positive regulator of prostate cancer metastasis, and the potential application of targeting this molecule to inhibit invasion and metastasis in prostate cancer and potentially other cancers.Significance: This study provides new mechanistic insight into the proinvasive role of MDA-9/Syntenin in prostate cancer and has potential for therapeutic application to prevent prostate cancer metastasis. Cancer Res; 78(11); 2852-63. ©2018 AACR.


Assuntos
Invasividade Neoplásica/genética , Neoplasias da Próstata/genética , Receptores de Somatomedina/genética , Fator de Transcrição STAT3/genética , Sinteninas/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Interleucina-6/genética , Interleucina-8/genética , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Melanoma/genética , Melanoma/patologia , Invasividade Neoplásica/patologia , Neoplasias da Próstata/patologia , Receptor IGF Tipo 1 , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA