Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 8(1): 28, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770509

RESUMO

Elevated impulsivity is a key component of attention-deficit hyperactivity disorder (ADHD), bipolar disorder and juvenile myoclonic epilepsy (JME). We performed a genome-wide association, colocalization, polygenic risk score, and pathway analysis of impulsivity in JME (n = 381). Results were followed up with functional characterisation using a drosophila model. We identified genome-wide associated SNPs at 8q13.3 (P = 7.5 × 10-9) and 10p11.21 (P = 3.6 × 10-8). The 8q13.3 locus colocalizes with SLCO5A1 expression quantitative trait loci in cerebral cortex (P = 9.5 × 10-3). SLCO5A1 codes for an organic anion transporter and upregulates synapse assembly/organisation genes. Pathway analysis demonstrates 12.7-fold enrichment for presynaptic membrane assembly genes (P = 0.0005) and 14.3-fold enrichment for presynaptic organisation genes (P = 0.0005) including NLGN1 and PTPRD. RNAi knockdown of Oatp30B, the Drosophila polypeptide with the highest homology to SLCO5A1, causes over-reactive startling behaviour (P = 8.7 × 10-3) and increased seizure-like events (P = 6.8 × 10-7). Polygenic risk score for ADHD genetically correlates with impulsivity scores in JME (P = 1.60 × 10-3). SLCO5A1 loss-of-function represents an impulsivity and seizure mechanism. Synaptic assembly genes may inform the aetiology of impulsivity in health and disease.

2.
Genet Med ; 21(2): 398-408, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30093711

RESUMO

PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.


Assuntos
Epilepsia/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Síndrome de Brugada/genética , Síndrome de Brugada/mortalidade , Síndrome de Brugada/fisiopatologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Epilepsia/complicações , Epilepsia/epidemiologia , Epilepsia/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Mutação INDEL/genética , Lactente , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Complexos Multiproteicos/genética , Linhagem , Convulsões/complicações , Convulsões/epidemiologia , Convulsões/genética , Convulsões/fisiopatologia , Transdução de Sinais/genética
3.
Mol Genet Metab Rep ; 15: 80-89, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30009132

RESUMO

OBJECTIVE: Reaching a genetic diagnosis of mitochondrial disorders (MDs) is challenging due to their broad phenotypic and genotypic heterogeneity. However, there is growing evidence that the use of whole exome sequencing (WES) for diagnosing patients with a clinical suspicion of an MD is effective (39-60%). We aimed to study the effectiveness of WES in clinical practice in Estonia, in patients with an unsolved, but suspected MD. We also show our first results of mtDNA analysis obtained from standard WES reads. METHODS: Retrospective cases were selected from a database of 181 patients whose fibroblast cell cultures had been stored from 2003 to 2013. Prospective cases were selected during the period of 2014-2016 from patients referred to a clinical geneticist in whom an MD was suspected. We scored each patient according to the mitochondrial disease criteria (MDC) (Morava et al., 2006) after re-evaluation of their clinical data, and then performed WES analysis. RESULTS: A total of 28 patients were selected to the study group. A disease-causing variant was found in 16 patients (57%) using WES. An MD was diagnosed in four patients (14%), with variants in the SLC25A4, POLG, SPATA5, and NDUFB11 genes. Other variants found were associated with a neuromuscular disease (SMN1, MYH2, and LMNA genes), neurodegenerative disorder (TSPOAP1, CACNA1A, ALS2, and SCN2A genes), multisystemic disease (EPG5, NKX1-2, ATRX, and ABCC6 genes), and one in an isolated cardiomyopathy causing gene (MYBPC3). The mtDNA point mutation was found in the MT-ATP6 gene of one patient upon mtDNA analysis. CONCLUSIONS: The diagnostic yield of WES in our cohort was 57%, proving to be a very good effectiveness. However, MDs were found in only 14% of the patients. We suggest WES analysis as a first-tier method in clinical genetic practice for children with any multisystem, neurological, and/or neuromuscular problem, as nuclear DNA variants are more common in children with MDs; a large number of patients harbor disease-causing variants in genes other than the mitochondria-related ones, and the clinical presentation might not always point towards an MD. We have also successfully conducted analysis of mtDNA from standard WES reads, providing further evidence that this method could be routinely used in the future.

4.
Am J Med Genet A ; 170(8): 2173-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27250579

RESUMO

The CACNA1A gene encodes the transmembrane pore-forming alpha-1A subunit of the Cav 2.1 P/Q-type voltage-gated calcium channel. Several heterozygous mutations within this gene, including nonsense mutations, missense mutations, and expansion of cytosine-adenine-guanine repeats, are known to cause three allelic autosomal dominant conditions-episodic ataxia type 2, familial hemiplegic migraine type 1, and spinocerebellar ataxia type 6. An association with epilepsy and CACNA1A mutations has also been described. However, the link with epileptic encephalopathies has emerged only recently. Here we describe two patients, sister and brother, with compound heterozygous mutations in CACNA1A. Exome sequencing detected biallelic mutations in CACNA1A: A missense mutation c.4315T>A (p.Trp1439Arg) in exon 27, and a seven base pair deletion c.472_478delGCCTTCC (p.Ala158Thrfs*6) in exon 3. Both patients were normal at birth, but developed daily recurrent seizures in early infancy with concomitant extreme muscular hypotonia, hypokinesia, and global developmental delay. The brain MRI images showed progressive cerebral, cerebellar, and optic nerve atrophy. At the age of 5, both patients were blind and bedridden with a profound developmental delay. The elder sister died at that age. Their parents and two siblings were heterozygotes for one of those pathogenic mutations and expressed a milder phenotype. Both of them have intellectual disability and in addition the mother has adult onset cerebellar ataxia with a slowly progressive cerebellar atrophy. Compound heterozygous mutations in the CACNA1A gene presumably cause early onset epileptic encephalopathy, and progressive cerebral, cerebellar and optic nerve atrophy with reduced lifespan. © 2016 Wiley Periodicals, Inc.


Assuntos
Alelos , Encefalopatias/genética , Canais de Cálcio/genética , Cerebelo/anormalidades , Epilepsia/genética , Malformações do Desenvolvimento Cortical/genética , Mutação , Atrofia Óptica/genética , Encefalopatias/diagnóstico , Eletrocardiografia , Exoma , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico , Atrofia Óptica/diagnóstico , Linhagem , Irmãos
5.
Eur J Med Genet ; 58(6-7): 336-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25907420

RESUMO

We report a female patient with a complex phenotype consisting of failure to thrive, developmental delay, congenital bronchiectasis, gastroesophageal reflux and bilateral inguinal hernias. Chromosomal microarray analysis revealed a 230 kilobase deletion in chromosomal region 17q21.32 (arr[hg19] 17q21.32(46 550 362-46 784 039)×1) encompassing only 9 genes - HOXB1 to HOXB9. The deletion was not found in her mother or father. This is the first report of a patient with a HOXB gene cluster deletion involving only HOXB1 to HOXB9 genes. By comparing our case to previously reported five patients with larger chromosomal aberrations involving the HOXB gene cluster, we can suppose that HOXB gene cluster deletions are responsible for growth retardation, developmental delay, and specific facial dysmorphic features. Also, we suppose that bilateral inguinal hernias, tracheo-esophageal abnormalities, and lung malformations represent features with incomplete penetrance. Interestingly, previously published knock-out mice with targeted heterozygous deletion comparable to our patient did not show phenotypic alterations.


Assuntos
Bronquiectasia/genética , Deficiências do Desenvolvimento/genética , Insuficiência de Crescimento/genética , Refluxo Gastroesofágico/genética , Deleção de Genes , Proteínas de Homeodomínio/genética , Bronquiectasia/diagnóstico , Deficiências do Desenvolvimento/diagnóstico , Insuficiência de Crescimento/diagnóstico , Feminino , Refluxo Gastroesofágico/diagnóstico , Humanos , Lactente , Síndrome
6.
Child Neurol Open ; 2(2): 2329048X15583717, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28503590

RESUMO

Mutations in the guanine nucleotide-binding protein (G protein), α activating activity polypeptide O (GNAO1) gene have recently been described in 6 patients with early infantile epileptic encephalopathies. In the present study, we report the phenotype and the clinical course of a 4-year-old female with an epileptic encephalopathy (Ohtahara syndrome) and profound intellectual disability due to a de novo GNAO1 mutation (c.692A>G; p.Tyr231Cys). Ohtahara syndrome is a devastating early infantile epileptic encephalopathy that can be caused by mutations in different genes, now also including GNAO1. The mutation was found using a targeted next generation sequencing gene panel and demonstrates targeted sequencing as a powerful tool for identifying mutations in genes where only a few de novo mutations have been identified.

7.
Eur J Med Genet ; 57(6): 279-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24704109

RESUMO

Prader-Willi syndrome (PWS) is caused by the lack of paternal expression of imprinted genes in the human chromosomal region 15q11.2-q13.2, which can be due to an interstitial deletion at 15q11.2-q13 of paternal origin (65-75%), maternal uniparental disomy (matUPD) of chromosome 15 (20-30%), or an imprinting defect (1-3%). The majority of PWS-associated matUPD15 cases represent a complete heterodisomy of chromosome 15 or a mixture of hetero- and isodisomic regions across the chromosome 15. Pure maternal isodisomy is observed in only a few matUPD15 patients. Here we report a case of an 18-year-old boy with some clinical features of Prader-Willi syndrome, such as overweight, muscular hypotonia, facial dysmorphism and psychiatric problems, but there was no reason to suspect PWS in the patient based solely on the phenotype estimation. However, chromosomal microarray analysis (CMA) revealed mosaic loss of heterozygosity of the entire chromosome 15. Methylation-specific multiplex ligation-dependant probe amplification (MS-MLPA) analysis showed hypermethylation of the SNRPN and NDN genes in the PWS/AS critical region of chromosome 15 in this patient. Taking into consideration the MS-MLPA results and the presence of PWS features in the patient, we concluded that it was matUPD15, although the patient's parents were not enrolled in the study. According to CMA and karyotyping, no trisomic or monosomic cells were present. To the best of our knowledge, only two PWS cases with mosaic maternal isodisomy 15 and without trisomic/monosomic cell lines have been reported so far.


Assuntos
Cromossomos Humanos Par 15/genética , Mosaicismo , Síndrome de Prader-Willi/genética , Dissomia Uniparental , Adolescente , Metilação de DNA , Humanos , Masculino , Análise em Microsséries , Mães , Reação em Cadeia da Polimerase Multiplex , Fenótipo , Síndrome de Prader-Willi/patologia , Proteínas Centrais de snRNP/genética
8.
Eur J Paediatr Neurol ; 18(3): 338-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24529875

RESUMO

Monosomy 1p36 is the most common subtelomeric deletion syndrome seen in humans. Uniform features of the syndrome include early developmental delay and consequent intellectual disability, muscular hypotonia, and characteristic dysmorphic facial features. The gene-rich nature of the chromosomal band, inconsistent deletion sizes and overlapping clinical features have complicated relevant genotype-phenotype correlations. We describe four patients with isolated chromosome 1p36 deletions. All patients shared white matter abnormalities, allowing us to narrow the critical region for white matter involvement to the deletion size of up to 2.5 Mb from the telomere. We hypothesise that there might be a gene(s) responsible for myelin development in the 1p36 subtelomeric region. Other significant clinical findings were progressive spastic paraparesis, epileptic encephalopathy, various skeletal anomalies, Prader-Willi-like phenotype, neoplastic changes - a haemangioma and a benign skin tumour, and in one case, sleep myoclonus, a clinical entity not previously described in association with 1p36 monosomy. Combined with prior studies, our results suggest that the clinical features seen in monosomy 1p36 have more complex causes than a classical contiguous gene deletion syndrome.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Monossomia/genética , Substância Branca/patologia , Adolescente , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Feminino , Estudos de Associação Genética , Humanos , Masculino , Monossomia/diagnóstico , Monossomia/patologia , Fenótipo , Substância Branca/anormalidades , Adulto Jovem
9.
J Child Neurol ; 22(1): 67-70, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17608308

RESUMO

The authors present the case of an infant girl with severe generalized weakness, multiple bone fractures, and heart defect. She needed mechanical ventilation from birth. Radiographs showed mid-diaphyseal fractures of both humeri and of the right femur as well as generalized osteopenia. Electroneuromyography showed spontaneous fibrillations at rest with no active movements. Motor response to a stimulus could not be registered. A systolic heart murmur was detected, and echocardiography showed a large atrial septal defect and an additional membrane in the left atrium. DNA analysis confirmed the diagnosis of spinal muscular atrophy on the third day of life. Histology of the muscle showed both hypertrophic and atrophic fibers. Degenerating swollen neurons were found in the ventral horns of the spinal cord and also in the mesencephalic red nucleus, which has not been described before. Humeral bone showed only partly formed cortical bone. The spectrum of spinal muscular atrophy is very diverse, and atypical clinical findings do not always rule out 5q spinal muscular atrophy. The SMN1 gene should still be investigated.


Assuntos
Fraturas Ósseas/complicações , Cardiopatias Congênitas/complicações , Atrofias Musculares Espinais da Infância/complicações , Feminino , Fraturas Ósseas/patologia , Cardiopatias Congênitas/patologia , Humanos , Recém-Nascido , Atrofias Musculares Espinais da Infância/patologia
10.
Neuroepidemiology ; 27(3): 164-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17035693

RESUMO

Spinal muscular atrophy is the second most frequent autosomal-recessive disorder in Europeans. There are no published epidemiological data on SMA in Estonia and other Baltic countries. The aim of this study was to estimate the incidence of SMA I in Estonia. All patients with SMA I diagnosed between January 1994 and December 2003 were included in the study. The diagnosis was established on the basis of neurological evaluation, ENMG findings, molecular studies and muscle biopsy. PCR and restriction enzyme analysis was used to detect the homozygous deletion of the SMN1 gene. A total of 9 cases of SMA I were identified during this 10-year period. The incidence of SMA I in Estonia is 1 in 14,400 live births, which is similar to the result from Hungary but lower than average incidence in the world. Only one of the patients was female. Typical SMN1 gene deletion was found in all cases.


Assuntos
Atrofias Musculares Espinais da Infância/epidemiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Estônia/epidemiologia , Éxons/genética , Feminino , Deleção de Genes , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Proteínas do Complexo SMN , Atrofias Musculares Espinais da Infância/diagnóstico , Atrofias Musculares Espinais da Infância/genética , Proteína 1 de Sobrevivência do Neurônio Motor
11.
Eur J Paediatr Neurol ; 7(5): 221-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14511626

RESUMO

Duchenne muscular dystrophy (DMD) is the most frequent muscle disorder in childhood. There are no data on the epidemiology of muscular dystrophy in Estonia and the other Baltic States. The present study assessed the incidence and prevalence of DMD in Estonia. A descriptive epidemiological study of DMD was carried out in children born and diagnosed between 1977 and 1999 in Estonia. Patients were identified using four different approaches. DMD was considered present in children with features that corresponded to the criteria established by the European Neuromuscular Centre. 20 incidence cases and 25 prevalence cases of definite DMD were identified. We found a DMD incidence rate of 11.91 x 10(-5) (95% CI; 7.28-18.4) live born males from 1977 to 1990. The point prevalence rate of DMD was 12.76 x 10(-5) (95% CI; 8.26-18.84) of the under-20 male population as of January 1, 1998. The incidence and prevalence estimates in this report were in the range of similar studies from other countries. A muscle biopsy database and a neuromuscular disorders database were launched with this study. Considering the course of the disease, the prevalence should be estimated on the basis of the total male population <20 years of age.


Assuntos
Distrofia Muscular de Duchenne/epidemiologia , Adolescente , Idade de Início , Criança , Pré-Escolar , Estônia/epidemiologia , Feminino , Ligação Genética/genética , Humanos , Lactente , Masculino , Distrofia Muscular de Duchenne/genética , Estudos Prospectivos , Estudos Retrospectivos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA