Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Food Nutr Res ; 105: 221-254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37516464

RESUMO

The processes for extracting and refining edible oils are well-established in industry at different scales. However, these processing lines encounter inefficiencies and oil losses when recovering crude or refined oil. Palm oil and olive oil extraction methods are used mainly as a combination of physical, thermal, and centrifugal methods to recover crude oil, which results in oil losses in the olive pomace or in palm oil effluents. Seed oils generally require a seed steam conditioning, and cooking stage, followed by physical oil recovery through an inefficient expeller. Most of the crude oil remaining in the expeller cake is then recovered by hexane. Crude seed oil is further refined in stages that also undergo oil losses. This chapter provides an overview of innovative technologies using microwave, ultrasound, megasonic and pulsed electric field energies, which can be used in the above-mentioned crude and refined oil processes to improve oil recovery. This chapter describes traditional palm oil, olive oil, and seed oil processes, as well as the specific process interventions that have been tested with these technologies. The impact of such technology interventions on oil quality is also summarized.


Assuntos
Petróleo , Azeite de Oliva , Óleo de Palmeira , Indústrias Extrativas e de Processamento
2.
Foods ; 12(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37297463

RESUMO

In extra virgin olive oil production, it is essential to obtain a well-prepared olive paste which allows not only the extraction of the oil drops from the olives, but also the achievement of a high-quality oil while maintaining high yields. This work addresses the problem of determining the effect of three crushing machines on the viscosity of the olive paste: a hammer crusher, a disk crusher and a de-stoner were tested. The tests were repeated on both the paste leaving each machine and the paste to which water was added; this was done with the main aim of considering the different dilutions of the paste while entering the decanter. A power law and the Zhang and Evans model were used to analyse the rheological behaviour of the paste. The experimental results allow validation of the two models with a high (more than 0.9) coefficient of determination between experimental and numerical data. The results also show that the pastes obtained with the two classic crushing methods (hammers and disks) are almost identical, with a packing factor of about 17.9% and 18.6%, respectively. Conversely, the paste obtained with the de-stoner entails higher viscosity values and a smaller solid packing factor, of about 2.8%. At 30% dilution with water, the volume of the solid concentration dropped to about 11.6% for the hammer and disc crushers, while for the de-stoner it only reached 1.8%. This behaviour is also reflected in the evaluation of yields, which were 6% lower with the de-stoner. No significant differences regarding the legal parameters of oil quality were found using the three different crushing systems. Finally, this paper establishes some fundamental pillars in the research for an optimal model for identifying the rheological behaviour of the paste as a function of the crusher used. Indeed, since there is an increasing need for automation in the oil extraction process, these models can be of great help in optimizing this process.

3.
Foods ; 11(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230110

RESUMO

The crushing system is crucial in the virgin olive oil (VOO) mechanical extraction process. The use of different crusher machines can highly influence the quality of the final product, mainly due to the phenolic and volatile content responsible for VOO sensory and health properties. An experimental investigation was conducted to evaluate the effect of the geometric features of a new model of crusher machine for olives. The crusher machine consists of interchangeable rotors: a rotor with hammers and a rotor with knives. The evaluation was carried out with the same fixed grid in stainless steel with 6 mm diameter circular holes. An evaluation was carried out on the impact of the crusher tools on the pit particle size and on the distribution of energy and temperature. The performance of the plant was also assessed in terms of process efficiency and olive oil quality. The results showed that the specific energy released by the tool per unit of product, calculated through both energy conservation and comminution theory, is about 25-27% higher in the case of hammers. Since the impact energy is mainly dissipated in the product as heat, the temperature reached during milling operations with the hammer crusher was also higher by the same percentage with respect to the knife crusher. This has important consequences on the quality of the product: the new knife rotor used in the crushing phase produced an improvement in VOO quality, relating mainly to sensory attributes and the health-enhancing properties of the final product. The ability of the crusher to break cell walls and vacuoles, thus releasing the oil contained therein, is comparable for the two different rotors.

4.
Foods ; 11(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140886

RESUMO

The aim of this study was to investigate how the treatment of olive paste of the Picholine variety with pulsed electric fields (PEF) under real operating conditions in a large-scale olive oil extraction plant affects the extractability, chemical composition and sensory profile of the oils. The application of pulsed electric fields (PEF) as a non-thermal food processing technology is interesting for many food extraction processes. The results of this study show that pulsed electric fields can be used as a pretreatment before oil separation to increase the extractability of the process and improve the content of functional components. The application of pulsed electric field (PEF) treatment (2.4 kV/cm, 4 kJ/kg, 6 µs pulse width) to olive paste through a continuous system significantly increased the extractability and total concentration of phenols (especially oleuropein derivatives) compared to the control. In addition, the volatile compounds, α-tocopherol, the fatty acid profile and the main legal quality parameters of extra virgin olive oil (EVOO), including free acidity, peroxide values, extinction indices and sensory analysis, were evaluated. The pulsed electric fields (PEF) treatment did not modify these EVOO quality parameters, neither the α-tocopherol content nor the volatile profile. The sensory properties of EVOO were not affected as well as the PEF treatment showed a similar intensity of fruity and pungent attributes without any off-flavor according to the European Union legal standards. An increase in the bitter taste attribute was observed in the PEF oils. Consequently, this study demonstrates that pulsed electric fields (PEF) processing could be implemented in olive oil processing as pretreatment for improving the efficiency of the process.

5.
Foods ; 10(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34441723

RESUMO

The anaerobic digestion plant studied in this paper is one of the first full-scale plants using olive oil by-products. This is a two-stage plant with a power of 100 kWe. Two tests were performed: the first on olive pulp and pitted pomace and the second on biomass consisting of 10% crushed cereal. In both cycles, the retention time was 40 days. The production of biogas was between 51 and 52 m3/h, with limited fluctuations. The specific production values of biogas indicate that a volume of biogas greater than 1 m3/kg was produced in both tests. The produced biogas had a methane percentage of about 60% and the specific production (over total volatile solids, TVS) of methane was of the order of 0.70 m3methane/kgTVS. FOS/Alk (ratio between volatile organic acids and alkalinity) was always lower than 1 and tended to decrease in the second digester, indicating a stable methanogenic phase and the proper working of the methanogenic bacteria in the second reactor. The concentration of incoming biomass TPC (total polyphenols content) can vary significantly, due to the seasonality of production or inadequate storage conditions, but all measured values of TPC, between 1840 and 3040 mg gallic acid kg-1, are considered toxic both for acidogenic and methanogenic bacteria. By contrast, during the process the polyphenols decreased to the minimum value at the end of the acidogenic phase, biogas production did not stop, and the methane percentage was high.

6.
Ultrason Sonochem ; 73: 105505, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33714088

RESUMO

The objective of this study is to assess the effects of installation and operation of a high-power ultrasound machine (HPU) for the treatment of olive paste by using ultrasound technology in order to evaluate the best way installation and the best definition of the operating conditions of the machine. The study was conducted installing in an industrial olive oil mill a continuous processing ultrasound machine, which used a frequency of 20 kHz able to work at 3200 kg h-1 as feed capacity. Checking of performance has been carried out by the assessment of the different operating and process conditions, assessing in particular the impact of the ultrasound treatment before and after the malaxation phase on performance indicators of the continuous olive oil plant (plant extractability, olive paste rheological characteristic) and on selected chemical properties of the olive oil extracted (quality parameters, antioxidant content, and volatile profiles). In the tested conditions, high-power ultrasound treatment did not produce significant effect on the legal parameters (free acidity, peroxide index and spectrophotometric indexes), while a significant increase in the content of phenolic compounds was generally observed; higher enhancements were more evident when the high-power ultrasound treatment was carried out before the malaxation phase.


Assuntos
Indústria Alimentícia , Azeite de Oliva/isolamento & purificação , Sonicação/instrumentação , Desenho de Equipamento , Reologia
7.
Foods ; 9(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575681

RESUMO

The properties of food products are the result of changes produced in raw materials as a result of process treatments. In the olive oil extraction process, these changes can be observed as differences in quality, nutritional characteristics, taste, and flavor, and are especially due to the time and temperature of the malaxation phase. These parameters are closely related to the mechanical design of malaxer machines. In this study, a new reel model for malaxer machines was designed. The new model was incorporated into an industrial malaxer machine and experimental tests were carried out to study the effects of two different reel designs (modified and unmodified profile) on the rheological characteristics of olive paste, the energy consumption of the plant, and the temperature profile inside the machine. The main commercial parameters of the produced olive oil were studied, as well as the extraction yield and the extraction efficiency of the plant. The malaxer machine equipped with the modified reel showed better homogenization of the paste, which led to improved heat exchange and rheological properties. The results of this study showed that a specific modification of the rotating reel can improve the performance of the malaxer in terms of improving the viscosity of the paste, 127,157.67 (mPa sn) for the malaxer with the modified reel at the beginning of malaxation, reaching a final value of 64,626.00 (mPa sn) at the end. The unmodified malaxer showed an initial viscosity coefficient of 133,754.00 (mPa sn) and a final value of 111,990.67 (mPa sn). This led to a reduction in malaxing times, an increase in the work capacity of the plant, and a reduction in total energy consumption and slowed down the oxidative phenomena responsible for the decrease in the quality of olive oil.

8.
J Sci Food Agric ; 99(12): 5594-5600, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31206180

RESUMO

BACKGROUND: Innovative technologies are experimentally applied to the virgin olive oil extraction process in order to make it continuous and more efficient. Most of the efforts aim at overcoming the limitations of the traditional malaxation step, which, however, is essential for the development of virgin olive oil sensory notes. RESULTS: Compared to the traditional process, innovative technologies based on the heat exchanger led generally to a decrement in volatile lipoxygenase (LOX) alcohols linked to alcohol dehydrogenase activity and, conversely, to a slightly increase in volatile LOX esters. Aldehydes from the same pathway were not significantly affected. However, an industrial combined plant constructed from a heat exchanger, low-frequency ultrasound device and microwave apparatus determined the highest 'fruity' intensity perceived by panellists, in accordance with the highest value of total volatiles, with values significantly higher than heat exchanger alone, which, instead, had the lowest levels of hexanal and LOX alcohols. The pungent taste showed the same trend observed for 'fruity' intensity, whereas bitter taste did not show significant differences among trials. CONCLUSION: The introduction of ultrasound, coupled with heat exchanger and microwave, seemed not to modify the behaviour of enzymes of the LOX pathway, and the obtained virgin olive oils showed volatiles and organoleptic characteristics not significantly different from those obtained by the traditional olive oil extraction process. These findings provided the first insights into the effect of the combination of innovative technologies in the olive oil extraction process on virgin olive oil volatiles and sensory characteristics. © 2019 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Olea/química , Azeite de Oliva/isolamento & purificação , Compostos Orgânicos Voláteis/isolamento & purificação , Frutas/química , Humanos , Azeite de Oliva/análise , Paladar , Compostos Orgânicos Voláteis/química
9.
J Sci Food Agric ; 97(1): 115-121, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26927223

RESUMO

BACKGROUND: An industrial prototype of a partial de-stoner machine was specified, built and implemented in an industrial olive oil extraction plant. The partial de-stoner machine was compared to the traditional mechanical crusher to assess its quantitative and qualitative performance. The extraction efficiency of the olive oil extraction plant, olive oil quality, sensory evaluation and rheological aspects were investigated. RESULTS: The results indicate that by using the partial de-stoner machine the extraction plant did not show statistical differences with respect to the traditional mechanical crushing. Moreover, the partial de-stoner machine allowed recovery of 60% of olive pits and the oils obtained were characterised by more marked green fruitiness, flavour and aroma than the oils produced using the traditional processing systems. CONCLUSION: The partial de-stoner machine removes the limitations of the traditional total de-stoner machine, opening new frontiers for the recovery of pits to be used as biomass. Moreover, the partial de-stoner machine permitted a significant reduction in the viscosity of the olive paste. © 2016 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/instrumentação , Manipulação de Alimentos/métodos , Olea/química , Azeite de Oliva/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Frutas/química , Humanos , Azeite de Oliva/química , Extratos Vegetais/química , Controle de Qualidade , Reologia , Paladar , Viscosidade , Compostos Orgânicos Voláteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA