Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34052753

RESUMO

Glycosaminoglycans (GAGs) are long linear sulfated polysaccharides implicated in processes linked to disease development such as mucopolysaccharidosis, respiratory failure, cancer, and viral infections, thereby serving as potential biomarkers. A successful clinical translation of GAGs as biomarkers depends on the availability of standardized GAG measurements. However, owing to the analytical complexity associated with the quantification of GAG concentration and structural composition, a standardized method to simultaneously measure multiple GAGs is missing. In this study, we sought to characterize the analytical performance of a ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-MS/MS)-based kit for the quantification of 17 free GAG disaccharides. The kit showed acceptable linearity, selectivity and specificity, accuracy and precision, and analyte stability in the absolute quantification of 15 disaccharides. In native human samples, here using urine as a reference matrix, the analytical performance of the kit was acceptable for the quantification of CS disaccharides. Intra- and inter-laboratory tests performed in an external laboratory demonstrated robust reproducibility of GAG measurements showing that the kit was acceptably standardized. In conclusion, these results indicated that the UHPLC-MS/MS kit was standardized for the simultaneous measurement of free GAG disaccharides allowing for comparability of measurements and enabling translational research.


Assuntos
Glicosaminoglicanos/urina , Espectrometria de Massas em Tandem/métodos , Adulto , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Breast Cancer Res ; 22(1): 135, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267867

RESUMO

BACKGROUND: The lack of specificity and high degree of false positive and false negative rates when using mammographic screening for detecting early-stage breast cancer is a critical issue. Blood-based molecular assays that could be used in adjunct with mammography for increased specificity and sensitivity could have profound clinical impact. Our objective was to discover and independently verify a panel of candidate blood-based biomarkers that could identify the earliest stages of breast cancer and complement current mammographic screening approaches. METHODS: We used affinity hydrogel nanoparticles coupled with LC-MS/MS analysis to enrich and analyze low-abundance proteins in serum samples from 20 patients with invasive ductal carcinoma (IDC) breast cancer and 20 female control individuals with positive mammograms and benign pathology at biopsy. We compared these results to those obtained from five cohorts of individuals diagnosed with cancer in organs other than breast (ovarian, lung, prostate, and colon cancer, as well as melanoma) to establish IDC-specific protein signatures. Twenty-four IDC candidate biomarkers were then verified by multiple reaction monitoring (LC-MRM) in an independent validation cohort of 60 serum samples specifically including earliest-stage breast cancer and benign controls (19 early-stage (T1a) IDC and 41 controls). RESULTS: In our discovery set, 56 proteins were increased in the serum samples from IDC patients, and 32 of these proteins were specific to IDC. Verification of a subset of these proteins in an independent cohort of early-stage T1a breast cancer yielded a panel of 4 proteins, ITGA2B (integrin subunit alpha IIb), FLNA (Filamin A), RAP1A (Ras-associated protein-1A), and TLN-1 (Talin-1), which classified breast cancer patients with 100% sensitivity and 85% specificity (AUC of 0.93). CONCLUSIONS: Using a nanoparticle-based protein enrichment technology, we identified and verified a highly specific and sensitive protein signature indicative of early-stage breast cancer with no false positives when assessing benign and inflammatory controls. These markers have been previously reported in cell-ECM interaction and tumor microenvironment biology. Further studies with larger cohorts are needed to evaluate whether this biomarker panel improves the positive predictive value of mammography for breast cancer detection.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Detecção Precoce de Câncer/métodos , Proteínas da Matriz Extracelular/sangue , Adulto , Idoso , Biópsia , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/sangue , Carcinoma Ductal de Mama/sangue , Carcinoma Ductal de Mama/patologia , Estudos de Casos e Controles , Estudos de Coortes , Proteínas da Matriz Extracelular/química , Feminino , Humanos , Masculino , Mamografia , Pessoa de Meia-Idade , Nanopartículas/química , Proteômica/métodos
3.
Elife ; 82019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30958262

RESUMO

Here, we present a method for in-depth human plasma proteome analysis based on high-resolution isoelectric focusing HiRIEF LC-MS/MS, demonstrating high proteome coverage, reproducibility and the potential for liquid biopsy protein profiling. By integrating genomic sequence information to the MS-based plasma proteome analysis, we enable detection of single amino acid variants and for the first time demonstrate transfer of multiple protein variants between mother and fetus across the placenta. We further show that our method has the ability to detect both low abundance tissue-annotated proteins and phosphorylated proteins in plasma, as well as quantitate differences in plasma proteomes between the mother and the newborn as well as changes related to pregnancy.


Assuntos
Proteínas Sanguíneas/análise , Troca Materno-Fetal , Plasma/química , Proteoma/análise , Cromatografia Líquida , Feminino , Voluntários Saudáveis , Humanos , Focalização Isoelétrica , Masculino , Gravidez , Transporte Proteico , Espectrometria de Massas em Tandem
4.
Proteomics ; 16(4): 689-97, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26699407

RESUMO

Soft tissue sarcomas (STS) are a heterogeneous group of rare tumors for which identification and validation of biological markers may improve clinical management. The fraction of low-molecular-weight (LMW) circulating proteins and fragments of proteins is a rich source of new potential biomarkers. To identify circulating biomarkers useful for STS early diagnosis and prognosis, we analyzed 53 high-grade STS sera using hydrogel core-shell nanoparticles that selectively entrap LMW proteins by size exclusion and affinity chromatography, protect them from degradation and amplify their concentration for mass spectrometry detection. Twenty-two analytes mostly involved in inflammatory and immunological response, showed a progressive increase from benign to malignant STS with a relative difference in abundance, more than 50% when compared to healthy control. 16 of these were higher in metastatic compared to non-metastatic tumors. Cox's regression analysis revealed a statistical significant association between the abundance of lactotransferrin (LTF) and complement factor H-related 5 (CFHR5) and risk of metastasis. In particular, CFHR5 was associated with the risk of metastasis. The role of circulating proteins involved in metastatic progression will be crucial for a better understanding of STS biology and patient management.


Assuntos
Proteínas Sanguíneas/análise , Sarcoma/sangue , Sarcoma/diagnóstico , Biomarcadores Tumorais/sangue , Proteínas do Sistema Complemento/análise , Diagnóstico Precoce , Humanos , Lactoferrina/análise , Lactoferrina/sangue , Nanopartículas/química , Metástase Neoplásica/diagnóstico , Prognóstico , Espectrometria de Massas em Tandem/métodos
5.
J Am Chem Soc ; 133(47): 19178-88, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21999289

RESUMO

Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.


Assuntos
Acrilamidas/química , Biomarcadores Tumorais/química , Nanopartículas/química , Polímeros/química , Acrilamidas/síntese química , Biomarcadores Tumorais/sangue , Corantes/química , Hormônio do Crescimento/urina , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Estrutura Molecular , Tamanho da Partícula , Peptídeos/química , Polímeros/síntese química , Porosidade , Proteínas/química , Propriedades de Superfície
6.
AAPS J ; 12(4): 504-18, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20549403

RESUMO

Current efforts to identify protein biomarkers of disease use mainly mass spectrometry (MS) to analyze tissue and blood specimens. The low-molecular-weight "peptidome" is an attractive information archive because of the facile nature by which the low-molecular-weight information freely crosses the endothelial cell barrier of the vasculature, which provides opportunity to measure disease microenvironment-associated protein analytes secreted or shed into the extracellular interstitium and from there into the circulation. However, identifying useful protein biomarkers (peptidomic or not) which could be useful to detect early detection/monitoring of disease, toxicity, doping, or drug abuse has been severely hampered because even the most sophisticated, high-resolution MS technologies have lower sensitivities than those of the immunoassays technologies now routinely used in clinical practice. Identification of novel low abundance biomarkers that are indicative of early-stage events that likely exist in the sub-nanogram per milliliter concentration range of known markers, such as prostate-specific antigen, cannot be readily detected by current MS technologies. We have developed a new nanoparticle technology that can, in one step, capture, concentrate, and separate the peptidome from high-abundance blood proteins. Herein, we describe an initial pilot study whereby the peptidome content of ovarian and prostate cancer patients is investigated with this method. Differentially abundant candidate peptidome biomarkers that appear to be specific for early-stage ovarian and prostate cancer have been identified and reveal the potential utility for this new methodology.


Assuntos
Biomarcadores Tumorais/metabolismo , Nanopartículas , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias da Próstata/metabolismo , Proteoma , Sequência de Aminoácidos , Cromatografia em Gel , Diagnóstico Precoce , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Neoplasias Ovarianas/diagnóstico , Mapeamento de Peptídeos , Neoplasias da Próstata/diagnóstico , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA