Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Rep ; 13: 101715, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39280991

RESUMO

Alzheimer's disease (AD) is a major cause of disability and one of the top causes of mortality globally. AD remains a major public health challenge due to its prevalence, impact on patients and caregivers, and the current lack of a cure. In recent years, polyphenols have garnered attention for their potential therapeutic effects on AD. The objective of the study was to establish network pharmacology between selected polyphenols of plant origin and AD. Insilico tools such as SwissADME, ProTox3.0, pkCSM, Swiss Target Prediction, DisGeNET, InterActiVenn, DAVID database, STRING database, Cytoscape/CytoHubba were employed to establish the multi-target potential of the polyphenolic compounds. The present study revealed that out of 17 polyphenols, 10 ligands were found to possess a drug-likeness nature along with desirable pharmacokinetic parameters and a lesser toxicity profile. Also, the results highlighted the possible interactions between the polyphenols and the disease targets involved in AD. Further, this study has shed light on the mTOR pathway and its impact on AD through the autophagic mechanism. Overall, this study indicated that polyphenols could be a better therapeutic option for treating AD. Hence, the consumption of polyphenolic cocktails as a part of the diet could produce more effective outcomes against the disease. Additional studies are warranted in the future to explore additional pathways and genes to provide a comprehensive understanding regarding the usage of the shortlisted polyphenols and their derivatives for the prevention and treatment of AD.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39007929

RESUMO

Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.

3.
Neuroscience ; 553: 1-18, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38944146

RESUMO

Glioblastoma (GBM) poses a formidable challenge in oncology due to its aggressive nature and dismal prognosis, with average survival rates around 15 months despite conventional treatments. This review proposes a novel therapeutic strategy for GBM by integrating microRNA (miRNA) therapy with 4-amino cyanine molecules possessing near-infrared (NIR) properties. miRNA holds promise in regulating gene expression, particularly in GBM, making it an attractive therapeutic target. 4-amino cyanine molecules, especially those with NIR properties, have shown efficacy in targeted tumor cell degradation. The combined approach addresses gene expression regulation and precise tumor cell degradation, offering a breakthrough in GBM treatment. Additionally, the review explores noncoding RNAs classification and characteristics, highlighting their role in GBM pathogenesis. Advanced technologies such as antisense oligonucleotides (ASOs), locked nucleic acids (LNAs), and peptide nucleic acids (PNAs) show potential in targeting noncoding RNAs therapeutically, paving the way for precision medicine in GBM. This synergistic combination presents an innovative approach with the potential to advance cancer therapy in the challenging landscape of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Animais , Carbocianinas , Regulação Neoplásica da Expressão Gênica
4.
Sci Rep ; 13(1): 18449, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891223

RESUMO

Obesity is a complex disease caused by various factors, and synthetic drugs used to treat it can have side effects. Natural compounds, such as olivetol, could be a promising alternative. Olivetol is a substance found in certain lichen species and has anti-inflammatory and anti-cancer properties. In this study, researchers conducted in-silico molecular docking studies and found that olivetol had significant binding affinity with receptors involved in obesity. They also investigated the effects of olivetol on a diet-induced obese zebrafish model and found that high doses of olivetol reduced excessive fat accumulation and triglyceride and lipid accumulation. The low dose of olivetol showed a significant reduction in liver enzymes' levels. However, the high dose of olivetol resulted in a significant increase in HMG-CoA levels. These results suggest that olivetol may be a promising anti-obesity agent for the treatment of hyperlipidemia-related disorders, but further research is necessary to understand its full effects on the body.


Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Animais , Dieta Hiperlipídica/efeitos adversos , Peixe-Zebra , Simulação de Acoplamento Molecular , Metabolismo dos Lipídeos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Fármacos Antiobesidade/metabolismo , Fígado/metabolismo
5.
Front Bioeng Biotechnol ; 11: 1222693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545888

RESUMO

The aim of this study was to investigate the influence of excipients on retaining the particle size of methotrexate (MTX) loaded chitosan nanocarriers (CsNP) during lyophilization, which relates to the ability to enlarge the particle size and target specific areas. The nanocarriers were prepared using the ionic gelation technique with tripolyphosphate as a crosslinker. Three lyophilized formulations were used: nanosuspension without Lyoprotectant (NF), with mannitol (NFM), and with sucrose (NFS). The lyophilized powder intended for injection (PI) was examined to assess changes in particle size, product integrity, and comparative biodistribution studies to evaluate targeting ability. After lyophilization, NFS was excluded from in-vivo studies due to the product melt-back phenomenon. The particle size of the NF lyophile significantly increased from 176 nm to 261 nm. In contrast, NFM restricted the nanocarrier size to 194 nm and exhibited excellent cake properties. FTIR, XRD, and SEM analysis revealed the transformation of mannitol into a stable ß, δ polymorphic form. Biodistribution studies showed that the nanocarriers significantly increased MTX accumulation in tumor tissue (NF = 2.04 ± 0.27; NFM = 2.73 ± 0.19) compared to the marketed PI (1.45 ± 0.25 µg), but this effect was highly dependent on the particle size. Incorporating mannitol yielded positive results in restricting particle size and favoring successful tumor targeting. This study demonstrates the potential of chitosan nanocarriers as promising candidates for targeted tumor drug delivery and cancer treatment.

6.
Arch Microbiol ; 205(6): 238, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193831

RESUMO

Kinases can be grouped into 20 families which play a vital role as a regulator of neoplasia, metastasis, and cytokine suppression. Human genome sequencing has discovered more than 500 kinases. Mutations of the kinase itself or the pathway regulated by kinases leads to the progression of diseases such as Alzheimer's, viral infections, and cancers. Cancer chemotherapy has made significant leaps in recent years. The utilization of chemotherapeutic agents for treating cancers has become difficult due to their unpredictable nature and their toxicity toward the host cells. Therefore, targeted therapy as a therapeutic option against cancer-specific cells and toward the signaling pathways is a valuable avenue of research. SARS-CoV-2 is a member of the Betacoronavirus genus that is responsible for causing the COVID pandemic. Kinase family provides a valuable source of biological targets against cancers and for recent COVID infections. Kinases such as tyrosine kinases, Rho kinase, Bruton tyrosine kinase, ABL kinases, and NAK kinases play an important role in the modulation of signaling pathways involved in both cancers and viral infections such as COVID. These kinase inhibitors consist of multiple protein targets such as the viral replication machinery and specific molecules targeting signaling pathways for cancer. Thus, kinase inhibitors can be used for their anti-inflammatory, anti-fibrotic activity along with cytokine suppression in cases of COVID. The main goal of this review is to focus on the pharmacology of kinase inhibitors for cancer and COVID, as well as ideas for future development.


Assuntos
COVID-19 , Neoplasias , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , SARS-CoV-2 , Neoplasias/tratamento farmacológico , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA