Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(30): 16610-16620, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37463267

RESUMO

Cyclic peptides as a therapeutic modality are attracting a lot of attention due to their potential for oral absorption and accessibility to intracellular tough targets. Here, starting with a drug-like hit discovered using an mRNA display library, we describe a chemical optimization that led to the orally available clinical compound known as LUNA18, an 11-mer cyclic peptide inhibitor for the intracellular tough target RAS. The key findings are as follows: (i) two peptide side chains were identified that each increase RAS affinity over 10-fold; (ii) physico-chemical properties (PCP) including Clog P can be adjusted by side-chain modification to increase membrane permeability; (iii) restriction of cyclic peptide conformation works effectively to adjust PCP and improve bio-activity; (iv) cellular efficacy was observed in peptides with a permeability of around 0.4 × 10-6 cm/s or more in a Caco-2 permeability assay; and (v) while keeping the cyclic peptide's main-chain conformation, we found one example where the RAS protein structure was changed dramatically through induced-fit to our peptide side chain. This study demonstrates how the chemical optimization of bio-active peptides can be achieved without scaffold hopping, much like the processes for small molecule drug discovery that are guided by Lipinski's rule of five. Our approach provides a versatile new strategy for generating peptide drugs starting from drug-like hits.


Assuntos
Peptídeos , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células CACO-2 , Peptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos Cíclicos/química , Conformação Molecular
2.
J Med Chem ; 65(19): 13401-13412, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36109865

RESUMO

We report a versatile and durable method for synthesizing highly N-alkylated drug-like cyclic peptides. This is the first reported method for synthesizing such peptides in parallel with a high success rate and acceptable purity that does not require optimizations for a particular sequence. We set up each reaction condition by overcoming the following issues: (1) diketopiperazine (DKP) formation, (2) insufficient peptide bond formation due to the steric hindrance of the N-alkylated amino acid, and (3) instability of highly N-alkylated peptides under acidic conditions. Using this newly established method, we successfully synthesized thousands of cyclic peptides to explore the scope of this modality in drug discovery. We here demonstrate the syntheses of a hundred representative examples, including our first clinical N-alkyl-rich cyclic peptide (LUNA18) that inhibits an intracellular tough target (RAS), in 31% total yield and 97% purity on average after 23 or 24 reaction steps.


Assuntos
Peptídeos Cíclicos , Peptídeos , Aminoácidos , Dicetopiperazinas , Peptídeos/química , Peptídeos Cíclicos/química
3.
Chemistry ; 15(16): 3983-4010, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19241433

RESUMO

Nature is a pretty unselective "chemist" when it comes to making the highly cytotoxic amphidinolide macrolides of the B/G/H series. To date, 16 different such compounds have been isolated, all of which could now be approached by a highly convergent and largely catalysis-based route (see figure). This notion is exemplified by the total synthesis of five prototype members of this family.Dinoflagellates of the genus Amphidinium produce a "library" of closely related secondary metabolites of mixed polyketide origin, which are extremely scarce but highly promising owing to the exceptional cytotoxicity against various cancer cell lines. Because of the dense array of sensitive functionalities on their largely conserved macrocyclic frame, however, these amphidinolides of the B, D, G and H types elapsed many previous attempts at their synthesis. Described herein is a robust, convergent and hence general blueprint which allowed not only to conquest five prototype members of these series, but also holds the promise of making "non-natural" analogues available by diverted total synthesis. This notion transpires for a synthesis-driven structure revision of amphidinolide H2. The successful route hinges upon a highly productive Stille-Migita cross-coupling reaction at the congested and chemically labile 1,3-diene site present in all such targets, which required the development of a modified chloride- and fluoride-free protocol. The macrocyclic ring could be formed with high efficiency and selectivity by ring-closing metathesis (RCM) engaging a vinyl epoxide unit as one of the reaction partners. Because of the sensitivity of the targets to oxidizing and reducing conditions as well as to pH changes, the proper adjustment of the protecting group pattern for the peripheral -OH functions also constitutes a critical aspect, which has to converge to silyl groups only once the diene is in place. Tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) turned out to be a sufficiently mild fluoride source to allow for the final deprotection without damaging the precious macrolides.


Assuntos
Antineoplásicos/química , Antineoplásicos/síntese química , Macrolídeos/química , Macrolídeos/síntese química , Toxinas Marinhas/química , Toxinas Marinhas/síntese química , Animais , Antineoplásicos/farmacologia , Catálise , Técnicas de Química Combinatória , Dinoflagellida/química , Macrolídeos/farmacologia , Toxinas Marinhas/farmacologia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA