Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(2): 475-481, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38050728

RESUMO

Tumour spheroids are widely used in immune cell cytotoxicity assays and anticancer drug testing, providing a physiologically relevant model replicating the tumour microenvironment. However, co-culture of immune and tumour cells complicates quantification of immune cell killing efficiency. We present a novel 3D hanging spheroid-filter plate that efficiently facilitates spheroid formation and separates unbound/dead cells during cytotoxicity assays. Optical imaging directly measures the cytotoxic effects of anti-cancer drugs on tumour spheroids, eliminating the need for live/dead fluorescent staining. This approach enables cost-effective evaluation of T-cell cytotoxicity with specific chimeric antigen receptors (CARs), enhancing immune cell-based assays and drug testing in three-dimensional tumour models.


Assuntos
Antineoplásicos , Esferoides Celulares , Linhagem Celular Tumoral , Técnicas de Cocultura , Antineoplásicos/farmacologia , Linfócitos T
2.
Cells ; 12(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672244

RESUMO

Immune checkpoint blockade (ICB) therapy involves the inhibition of immune checkpoint regulators which reverses their limitation of T cell anti-tumor responses and results in long-lasting tumor regression. However, poor clinical response or tumor relapse was observed in some patients receiving such therapy administered via antibodies blocking the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death 1 (PD-1) pathway alone or in combination, suggesting the involvement of additional immune checkpoints. CD96, a possible immune checkpoint, was previously shown to suppress natural killer (NK) cell anti-tumor activity but its role in human T cells remains controversial. Here, we demonstrate that CRISPR/Cas9-based deletion of CD96 in human T cells enhanced their killing of leukemia cells in vitro. T cells engineered with a chimeric antigen receptor (CAR) comprising human epidermal growth factor receptor 2 (EGFR2/HER2)-binding extracellular region and intracellular regions of CD96 and CD3ζ (4D5-96z CAR-T cells) were less effective in suppressing the growth of HER2-expressing tumor cells in vitro and in vivo compared with counterparts bearing CAR that lacked CD96 endodomain (4D5-z CAR-T cells). Together, our findings implicate a role for CD96 endodomain in attenuating T cell cytotoxicity and support combination tumor immunotherapy targeting multiple rather than single immune checkpoints.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Neoplasias/metabolismo , Células Matadoras Naturais , Imunoterapia/métodos , Receptores de Antígenos Quiméricos/metabolismo , Antígenos CD/metabolismo
3.
Front Immunol ; 14: 1282758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274800

RESUMO

Adoptive cellular immunotherapy as a new paradigm to treat cancers is exemplified by the FDA approval of six chimeric antigen receptor-T cell therapies targeting hematological malignancies in recent years. Conventional αß T cells applied in these therapies have proven efficacy but are confined almost exclusively to autologous use. When infused into patients with mismatched human leukocyte antigen, αß T cells recognize tissues of such patients as foreign and elicit devastating graft-versus-host disease. Therefore, one way to overcome this challenge is to use naturally allogeneic immune cell types, such as γδ T cells. γδ T cells occupy the interface between innate and adaptive immunity and possess the capacity to detect a wide variety of ligands on transformed host cells. In this article, we review the fundamental biology of γδ T cells, including their subtypes, expression of ligands, contrasting roles in and association with cancer prognosis or survival, as well as discuss the gaps in knowledge pertaining to this cell type which we currently endeavor to elucidate. In addition, we propose how to harness the unique properties of γδ T cells for cellular immunotherapy based on lessons gleaned from past clinical trials and provide an update on ongoing trials involving these cells. Lastly, we elaborate strategies that have been tested or can be explored to improve the anti-tumor activity and durability of γδ T cells in vivo.


Assuntos
Doença Enxerto-Hospedeiro , Neoplasias , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Imunoterapia Adotiva , Imunoterapia , Neoplasias/metabolismo
5.
J Nanobiotechnology ; 20(1): 30, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012567

RESUMO

BACKGROUND: Most high-throughput screening (HTS) systems studying the cytotoxic effect of chimeric antigen receptor (CAR) T cells on tumor cells rely on two-dimensional cell culture that does not recapitulate the tumor microenvironment (TME). Tumor spheroids, however, can recapitulate the TME and have been used for cytotoxicity assays of CAR T cells. But a major obstacle to the use of tumor spheroids for cytotoxicity assays is the difficulty in separating unbound CAR T and dead tumor cells from spheroids. Here, we present a three-dimensional hanging spheroid plate (3DHSP), which facilitates the formation of spheroids and the separation of unbound and dead cells from spheroids during cytotoxicity assays. RESULTS: The 3DHSP is a 24-well plate, with each well composed of a hanging dripper, spheroid wells, and waste wells. In the dripper, a tumor spheroid was formed and mixed with CAR T cells. In the 3DHSP, droplets containing the spheroids were deposited into the spheroid separation well, where unbound and dead T and tumor cells were separated from the spheroid through a gap into the waste well by tilting the 3DHSP by more than 20°. Human epidermal growth factor receptor 2 (HER2)-positive tumor cells (BT474 and SKOV3) formed spheroids of approximately 300-350 µm in diameter after 2 days in the 3DHSP. The cytotoxic effects of T cells engineered to express CAR recognizing HER2 (HER2-CAR T cells) on these spheroids were directly measured by optical imaging, without the use of live/dead fluorescent staining of the cells. Our results suggest that the 3DHSP could be incorporated into a HTS system to screen for CARs that enable T cells to kill spheroids formed from a specific tumor type with high efficacy or for spheroids consisting of tumor types that can be killed efficiently by T cells bearing a specific CAR. CONCLUSIONS: The results suggest that the 3DHSP could be incorporated into a HTS system for the cytotoxic effects of CAR T cells on tumor spheroids.


Assuntos
Sobrevivência Celular/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Receptores de Antígenos Quiméricos/genética , Esferoides Celulares , Microambiente Tumoral , Técnicas de Cultura de Células em Três Dimensões , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Esferoides Celulares/química , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
6.
Cell Death Dis ; 12(11): 1054, 2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34743196

RESUMO

How pathogenesis of inflammatory bowel disease (IBD) depends on the complex interplay of host genetics, microbiome and the immune system is not fully understood. Here, we showed that Downstream of Kinase 3 (DOK3), an adapter protein involved in immune signaling, confers protection of mice from dextran sodium sulfate (DSS)-induced colitis. DOK3-deficiency promotes gut microbial dysbiosis and enhanced colitis susceptibility, which can be reversed by the transfer of normal microbiota from wild-type mice. Mechanistically, DOK3 exerts its protective effect by suppressing JAK2/STAT3 signaling in colonic neutrophils to limit their S100a8/9 production, thereby maintaining gut microbial ecology and colon homeostasis. Hence, our findings reveal that the immune system and microbiome function in a feed-forward manner, whereby DOK3 maintains colonic neutrophils in a quiescent state to establish a gut microbiome essential for intestinal homeostasis and protection from IBD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Homeostase , Intestinos/metabolismo , Janus Quinase 2/metabolismo , Neutrófilos/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Colite/genética , Colite/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Disbiose/complicações , Disbiose/microbiologia , Regulação da Expressão Gênica , Mucosa Intestinal/patologia , Intestinos/microbiologia , Intestinos/patologia , Camundongos , Microbiota , Transdução de Sinais
7.
Stem Cell Res ; 53: 102272, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33676128

RESUMO

Mesenchymal stem cells (MSCs) are of great clinical interest as a form of allogenic therapy due to their excellent regenerative and immunomodulatory effects for various therapeutic indications. Stirred suspension bioreactors using microcarriers (MC) have been used for large-scale production of MSCs compared to planar cultivation systems. Previously, we have demonstrated that expansion of MSCs in MC-spinner cultures improved chondrogenic, osteogenic, and cell migration potentials as compared to monolayer-static cultures. In this study, we sought to address this by analyzing global gene expression patterns, miRNA profiles and secretome under both monolayer-static and MC-spinner cultures in serum-free medium at different growth phases. The datasets revealed differential expression patterns that correlated with potentially improved MSC properties in cells from MC-spinner cultures compared to those of monolayer-static cultures. Transcriptome analysis identified a unique expression signature for cells from MC-spinner cultures, which correlated well with miRNA expression, and cytokine secretion involved in key MSC functions. Importantly, MC-spinner cultures and conditioned medium showed increased expression of factors that possibly enhance pathways of extracellular matrix dynamics, cellular metabolism, differentiation potential, immunoregulatory function, and wound healing. This systematic analysis provides insights for the efficient optimization of stem cell bioprocessing and infers that MC-based bioprocess manufacturing could improve post-expansion cellular properties for stem cell therapies.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas/genética , Humanos , MicroRNAs/genética
8.
Sci Rep ; 9(1): 16768, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727983

RESUMO

Mammalian host cell lines are the preferred expression systems for the manufacture of complex therapeutics and recombinant proteins. However, the most utilized mammalian host systems, namely Chinese hamster ovary (CHO), Sp2/0 and NS0 mouse myeloma cells, can produce glycoproteins with non-human glycans that may potentially illicit immunogenic responses. Hence, we developed a fully human expression system based on HEK293 cells for the stable and high titer production of recombinant proteins by first knocking out GLUL (encoding glutamine synthetase) using CRISPR-Cas9 system. Expression vectors using human GLUL as selection marker were then generated, with recombinant human erythropoietin (EPO) as our model protein. Selection was performed using methionine sulfoximine (MSX) to select for high EPO expression cells. EPO production of up to 92700 U/mL of EPO as analyzed by ELISA or 696 mg/L by densitometry was demonstrated in a 2 L stirred-tank fed batch bioreactor. Mass spectrometry analysis revealed that N-glycosylation of the produced EPO was similar to endogenous human proteins and non-human glycan epitopes were not detected. Collectively, our results highlight the use of a human cellular expression system for the high titer and xenogeneic-free production of EPO and possibly other complex recombinant proteins.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Eritropoetina/genética , Eritropoetina/metabolismo , Glutamato-Amônia Ligase/genética , Engenharia de Proteínas/métodos , Sistemas CRISPR-Cas , Expressão Gênica , Técnicas de Inativação de Genes , Vetores Genéticos/genética , Glicosilação , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Recombinantes/metabolismo
9.
J Immunol ; 184(4): 1849-57, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20061405

RESUMO

The cytokines and transcription factors that promote Th17 cell development have been extensively studied. However, the signaling pathways that antagonize Th17 differentiation remain poorly characterized. In this study, we report that pharmacologic inhibition of MEK-ERK signaling enhances the in vitro differentiation of Th17 cells and increases their gene expression of il-17a, il-17f, il-21, il-22, and il-23r. IL-2, which suppresses Th17 differentiation via STAT5 activation, also acts through ERK signaling to inhibit Th17 generation. In turn, ERK signaling is found to potentiate the production of IL-2 and activate STAT5, suggesting the existence of an autoregulatory loop to constrain Th17 development. Finally, compared with the transfer of untreated Th17 cells, the transfer of ERK-inhibited Th17 cells leads to accelerated onset and exacerbated colitis in immunodeficient mice. Our data indicate that MEK-ERK signaling negatively regulates Th17 differentiation in a Th cell-intrinsic manner.


Assuntos
Diferenciação Celular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Interleucina-17/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/imunologia , Inibidores de Proteínas Quinases/farmacologia , Linfócitos T Auxiliares-Indutores/enzimologia , Animais , Butadienos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-17/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/transplante
10.
J Biol Chem ; 281(39): 28666-78, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16880206

RESUMO

The inducible costimulator (ICOS), a member of the CD28 family of costimulatory molecules, is rapidly induced upon T cell activation. Although the critical role of ICOS in costimulating T cell responses is well documented, little is known of the intracellular signaling pathways and mechanisms that regulate ICOS expression. Here, we report that Fyn, NFAT, and ERK signaling influence ICOS expression as various chemical inhibitors, such as PP2 that targets Src kinases, U0126 that targets MEK1/2, and cyclosporin A or FK506 that targets calcineurin and thereby affects NFAT, attenuate T cell receptor-mediated ICOS induction. Moreover, ectopic expression of NFATc2 or a constitutively active MEK2 amplifies ICOS transcription and transactivates a 288-bp core region of the icos promoter in luciferase reporter assays. We also identify a site on the icos promoter that is sensitive to ERK signaling and further show that NFATc2 can bind the icos promoter in vivo and that this binding is diminished when Fyn signaling is ablated. The normal activation of ERK but reduced nuclear translocation of NFATc2 in Fyn(-/-) CD4(+) T cells further suggest that Fyn and NFATc2 act in a common axis, separate from that involving ERK, to drive ICOS transcription. Taken together, our findings indicate that Fyn-calcineurin-NFATc2 and MEK2-ERK1/2 are two independent signaling pathways that cooperate to control T cell receptor-mediated ICOS induction.


Assuntos
Antígenos de Diferenciação de Linfócitos T/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Antígenos de Diferenciação de Linfócitos T/genética , Sítios de Ligação , Linfócitos T CD4-Positivos/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis , MAP Quinase Quinase 2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Transdução de Sinais , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA