Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442051

RESUMO

Eclipta prostrata (L.), commonly known as false daisy of the family Asteraceae, is an erect or prostrate annual herb that grows 5 to 45 cm tall. It is widespread mainly in tropical and subtropical regions like India, China, Taiwan, Thailand, and Brazil (Chung et al., 2017). E. prostrata has very wide medicinal properties accounted by several phytochemicals like thiophene derivatives, steroids, flavonoids, and polypeptides (Feng et. al., 2019). It is also used as a traditional herbal medicine for the treatment of bleeding, hemoptysis and itching, hepatitis diarrhea, and even hair loss (Timalsina et al., 2021). In September 2021, E. prostrata displaying branch proliferation and phyllody symptoms with about 30% (6 were symptomatic and 14 were healthy) incidence rate was observed in Mailiao, Yunlin, Taiwan where phytoplasma disease is permeating and has affected many crops and non-crop species including peanut, mungbean, curl-leaved tobacco, false amaranth, etc. Compared to healthy E. prostrata bearing white ray florets and cream or dull white disk florets, symptomatic ones developed phyllody which is more pronounced on the severely infected ones. Further examination by transmission electron microscope revealed a pleomorphic (circular, elliptical, and bell-shaped) phytoplasma-like organisms accumulated in the sieve elements of the symptomatic leaves. Phytoplasma infection was further confirmed by nested polymerase chain reaction using universal primers P1/P7 (carried out for 12 cycles), followed by R16F2n/R16R2 (carried out for 35 cycles) on the genomic DNA extracted by Plant Genomic DNA Purification Kit (DP022-150, GeneMark) (Lee et al. 1993). Results revealed that the conserved 16S rRNA gene with a 1.2 kb fragment size was amplified only by the symptomatic samples. Furthermore, western blotting was done using the polyclonal antibody raised against the immunodominant membrane protein (Imp) of peanut witches'-broom (PnWB) phytoplasma, a 'Candidatus Phytoplasma aurantifolia' in Taiwan that belongs group to 16SrII (Chen et al. 2021). Consistent with the nested PCR, only the symptomatic samples revealed a specific Imp signal with a size of 19 kDa. To classify the phytoplasma associated with the symptomatic E. prostrata, the DNA sequence (No. OM397418) of the P1/P7 primer pair-amplified DNA fragment was obtained using P1 and a nested primer (5'-GGGTCTTTACTGACGCTGAGG-3'), which shares 100% identity with that of GenBank accession NZ_AMWZ01000008 (complement [31109 to 32640]) of PnWB phytoplasma. Further analysis of the virtual RFLP pattern of OM397418 by iPhyClassifier confirmed that the phytoplasma identified in the symptomatic E. prostrata belongs 16SrII-V subgroup. To the best of our knowledge, this is the first report of phytoplasma disease in E. prostrata associated with the 'Ca. P. aurantifolia' in Taiwan.

2.
Plant Dis ; 106(3): 805-809, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34763517

RESUMO

Nicotiana plumbaginifolia Viviani, commonly known as curl-leaved tobacco, is an annual herbaceous plant belonging to Solanaceae family. This plant is native to Mexico, South America, and parts of the Caribbean and has been reported to be present in Taiwan since 2006. In March 2021, N. plumbaginifolia Viviani, found in Yunlin County, Taiwan, was observed to have phyllody, virescence, and witches'-broom, which is consistent with the disease symptoms caused by phytoplasma infection. Samples of the healthy and symptomatic plants were collected for analysis of the causal agent associated with the diseased N. plumbaginifolia Viviani. Under transmission electron microscopy, the phytoplasma-like pleomorphic bodies were found in the sieve tubes of the diseased plants. The 16S ribosomal RNA (rRNA)-based phylogenetic analysis and the iPhyClassifier-based virtual restriction fragment length polymorphism study demonstrated that the phytoplasma identified in this study can be classified into the 16SrII-V subgroup, which is similar to the peanut witches'-broom phytoplasma, a 'Candidatus phytoplasma aurantifolia'-related strain. Further identification of SAP54/PHYL1 and SAP11 homologs in the phytoplasma explain the disease symptoms of phyllody, virescence, and witches'-broom observed in diseased N. plumbaginifolia Viviani. The discovery of new phytoplasma plant hosts has gained scientific importance in light of the attempt to unravel an efficient strategy to fight the rapid spread of this disease, which poses a threat to the agricultural sector and food security in Taiwan.


Assuntos
Phytoplasma , Filogenia , Phytoplasma/genética , Doenças das Plantas , RNA Ribossômico 16S/genética , Nicotiana/genética
3.
Sci Rep ; 11(1): 6086, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731735

RESUMO

Amaranthus tricolor L., a vegetable Amaranthus species, is an economically important crop containing large amounts of betalains. Betalains are natural antioxidants and can be classified into betacyanins and betaxanthins, with red and yellow colors, respectively. A. tricolor cultivars with varying betalain contents, leading to striking red to green coloration, have been commercially produced. However, the molecular differences underlying betalain biosynthesis in various cultivars of A. tricolor remain largely unknown. In this study, A. tricolor cultivars with different colors were chosen for comparative transcriptome analysis. The elevated expression of AmCYP76AD1 in a red-leaf cultivar of A. tricolor was proposed to play a key role in producing red betalain pigments. The functions of AmCYP76AD1, AmDODAα1, AmDODAα2, and AmcDOPA5GT were also characterized through the heterologous engineering of betalain pigments in Nicotiana benthamiana. Moreover, high and low L-DOPA 4,5-dioxygenase activities of AmDODAα1 and AmDODAα2, respectively, were confirmed through in vitro enzymatic assays. Thus, comparative transcriptome analysis combined with functional and enzymatic studies allowed the construction of a core betalain biosynthesis pathway of A. tricolor. These results not only provide novel insights into betalain biosynthesis and evolution in A. tricolor but also provide a basal framework for examining genes related to betalain biosynthesis among different species of Amaranthaceae.


Assuntos
Amaranthus , Betalaínas/biossíntese , Folhas de Planta , Amaranthus/genética , Amaranthus/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo
4.
J Exp Bot ; 69(22): 5389-5401, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30165491

RESUMO

As key mediators linking developmental processes with plant immunity, TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 and 2) transcription factors have been increasingly shown to be targets of pathogenic effectors. We report here that TB/CYC (TEOSINTE-BRANCHED/CYCLOIDEA)-TCPs are destabilized by phytoplasma SAP11 effectors, leading to the proliferation of axillary meristems. Although a high degree of sequence diversity was observed among putative SAP11 effectors identified from evolutionarily distinct clusters of phytoplasmas, these effectors acquired fundamental activity in destabilizing TB/CYC-TCPs. In addition, we demonstrate that miR156/SPLs and miR172/AP2 modules, which represent key regulatory hubs involved in plant phase transition, were modulated by Aster Yellows phytoplasma strain Witches' Broom (AY-WB) protein SAP11. A late-flowering phenotype with significant changes in the expression of flowering-related genes was observed in transgenic Arabidopsis plants expressing SAP11AYWB. These morphological and molecular alterations were correlated with the ability of SAP11 effectors to destabilize CIN (CINCINNATA)-TCPs. Although not all putative SAP11 effectors display broad-spectrum activities in modulating morphological and physiological changes in host plants, they serve as core virulence factors responsible for the witches' broom symptom caused by phytoplasmas.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Phytoplasma/fisiologia , Fatores de Transcrição/genética , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Phytoplasma/genética , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Fatores de Transcrição/metabolismo , Fatores de Virulência
5.
J Exp Bot ; 67(14): 4415-25, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27279277

RESUMO

Phytoplasmas are bacterial phytopathogens that release virulence effectors into sieve cells and act systemically to affect the physiological and morphological state of host plants to promote successful pathogenesis. We show here that transgenic Nicotiana benthamiana lines expressing the secreted effector SAP11 from Candidatus Phytoplasma mali exhibit an altered aroma phenotype. This phenomenon is correlated with defects in the development of glandular trichomes and the biosynthesis of 3-isobutyl-2-methoxypyrazine (IBMP). IBMP is a volatile organic compound (VOC) synthesized by an O-methyltransferase, via a methylation step, from a non-volatile precursor, 3-isobutyl-2-hydroxypyrazine (IBHP). Based on comparative and functional genomics analyses, NbOMT1, which encodes an O-methyltransferase, was found to be highly suppressed in SAP11-transgenic plants. We further silenced NbOMT1 through virus-induced gene silencing and demonstrated that this enzyme influenced the accumulation of IBMP in N. benthamiana In vitro biochemical analyses also showed that NbOMT1 can catalyse IBHP O-methylation in the presence of S-adenosyl-L-methionine. Our study suggests that the phytoplasma effector SAP11 has the ability to modulate host VOC emissions. In addition, we also demonstrated that SAP11 destabilized TCP transcription factors and suppressed jasmonic acid responses in N. benthamiana These findings provide valuable insights into understanding how phytoplasma effectors influence plant volatiles.


Assuntos
Metiltransferases/metabolismo , Nicotiana/microbiologia , Phytoplasma/metabolismo , Proteínas de Plantas/metabolismo , Pirazinas/metabolismo , Western Blotting , Metiltransferases/genética , Filogenia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/metabolismo , Tricomas/metabolismo , Tricomas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA