Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(16): eadl4336, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630829

RESUMO

Developing protein drugs that can target intracellular sites remains a challenge due to their inadequate membrane permeability. Efficient carriers for cytosolic protein delivery are required for protein-based drugs, cancer vaccines, and CRISPR-Cas9 gene therapies. Here, we report a screening process to identify highly efficient materials for cytosolic protein delivery from a library of dual-functionalized polymers bearing both boronate and lipoic acid moieties. Both ligands were found to be crucial for protein binding, endosomal escape, and intracellular protein release. Polymers with higher grafting ratios exhibit remarkable efficacies in cytosolic protein delivery including enzymes, monoclonal antibodies, and Cas9 ribonucleoprotein while preserving their activity. Optimal polymer successfully delivered Cas9 ribonucleoprotein targeting NLRP3 to disrupt NLRP3 inflammasomes in vivo and ameliorate inflammation in a mouse model of psoriasis. Our study presents a promising option for the discovery of highly efficient materials tailored for cytosolic delivery of specific proteins and complexes such as Cas9 ribonucleoprotein.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Técnicas de Transferência de Genes , Terapia Genética , Polímeros/química , Ribonucleoproteínas/genética
2.
J Control Release ; 355: 675-684, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791993

RESUMO

Peptide drugs have been successfully used for the treatment of various diseases. However, it is still challenging to develop therapeutic peptides working on intracellular targets due to their poor membrane permeability. Here, we proposed a type of dual-responsive bioconjugates bearing a heterobifunctional adaptor containing both aldehyde and catechol moieties for efficient cytosolic peptide delivery. Hydrazine-terminated cargo peptides were tagged to a boronated dendrimer with the help of the adaptor via dynamic acylhydrazone and catechol­boronate linkages. The bioconjugates efficiently delivered peptides with distinct physicochemical properties into various cells, and could release the cargo peptides triggered by intracellular reactive oxygen species and endolysosomal acidity, restoring the biofunctions of delivered peptides. In addition, the designed complexes efficiently delivered a pro-apoptotic peptide into osteosarcoma cancer cells and successfully inhibited the tumor growth both in vitro and in vivo. This study provides a universal and efficient platform for cytosolic therapeutic peptide delivery to intracellular targets for treating various diseases.


Assuntos
Neoplasias , Peptídeos , Humanos , Peptídeos/química , Neoplasias/tratamento farmacológico
3.
Nano Lett ; 22(20): 8233-8240, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173109

RESUMO

Intracellular protein delivery has attracted increasing attentions in biomedical applications. However, current delivery systems usually have poor serum stability due to the competitive binding of serum proteins to the polymers during delivery. Here, we report a reversible cross-linking strategy to improve the serum stability of polymers for robust intracellular protein delivery. In the proposed delivery system, nanoparticles are assembled by cargo proteins and cationic polymers and further stabilized by a glutathione-cleavable and traceless cross-linker. The cross-linked nanoparticles show high stability and efficient cell internalization in serum containing medium and can release the cargo proteins in response to intracellular glutathione and acidic pH in a traceless manner. The generality and versatility of the proposed strategy were demonstrated on different types of cationic polymers, cargo proteins, as well as cell lines. The study provides a facile and efficient method for improving the serum tolerance of cationic polymers in intracellular protein delivery.


Assuntos
Nanopartículas , Polímeros , Cátions , Glutationa , Sistemas de Liberação de Medicamentos
4.
Nano Lett ; 22(15): 6245-6253, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900805

RESUMO

Cytosolic delivery of peptides remains a challenging task because of the limited binding sites on peptides and the existence of multiple intracellular barriers. Here, we proposed the use of polycatechols with a high cell permeability to deliver peptides of different physicochemical properties using the catechol-boronate chemistry. Peptides were decorated with boronate moieties via three strategies, and the introduced boronate groups greatly increased the binding affinity of cargo peptides with polycatechols. The loading peptides could be released under the endolysosomal acidity. When the cargo peptide was modified with boronate moiety via a p-hydroxybenzylcarbamate self-immolative spacer, it could be loaded by polycatechols and released in a traceless manner triggered by reactive oxygen species. The proposed strategies greatly promote the cytosolic delivery efficiency of different peptides into various cell lines and restored their biofunctions after intracellular delivery and release. This study provides a general and robust platform for the intracellular delivery of membrane-impermeable peptides.


Assuntos
Catecóis , Peptídeos , Catecóis/metabolismo , Citosol/metabolismo , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA