Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Talanta ; 273: 125876, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458082

RESUMO

The high level of alpha-fetoprotein (AFP) expression is closely related to hepatocellular carcinoma (HCC). Herein, a dual signal ratiometric electrochemical immunosensor based on chitosan-ferrocenecarboxaldehyde-spindle gold (Chit-Fc-SAu) and Co/Fe metal-organic framework-toluidine blue/polydopamine (Co/Fe MOF-TB/PDA) was proposed for quantitative analysis of AFP. Specifically, Chit-Fc-SAu worked as a substrate to trap more primary antibodies (Ab1) generating the first electrochemical signal from Fc. Thanks to the large specific surface area, the synergistic and electronic effects of Co/Fe MOF nanosheets, and the rich functional groups of PDA, Co/Fe MOF-TB/PDA could load more secondary antibodies (Ab2) and signal molecules (TB) providing another amplified electrochemical signal. In the presence of AFP, Ab1-AFP-Ab2 formed a sandwich structure, and as the AFP concentration increased, the peak current ratio of TB to Fc (ITB/IFc) also increased. The dual signal ratiometric strategy can avoid environmental signal interference and achieve signal self-calibration, thereby improving the accuracy and reproducibility of detection. After a series of exploration, this self-calibrated ratiometric immunosensor exhibited a wide linear range (0.001-200 ng mL-1), a low detection limit (0.34 pg mL-1), and good repeatability. When applied to the assay of clinical serum samples, the detection results of ratiometric sensor were consistent with that of commercial electrochemiluminescence (ECL) immunoassay, significantly superior to that of non-ratiometric sensor. The self-calibrated strategy based on ratiometric sensor helps to improve the accuracy of AFP in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Humanos , alfa-Fetoproteínas/análise , Cloreto de Tolônio/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Bases de Schiff , Imunoensaio/métodos , Anticorpos/química , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Ouro/química
2.
Life Sci ; 330: 121998, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536615

RESUMO

AIMS: Novel antimycin alkaloid antimycin A2c (AE) was isolated from the culture of a marine derived Streptomyces sp. THS-55. We elucidated its chemical structure by extensive spectra and clarified the specific mechanism in HPV infected-cervical cancer. MATERIALS AND METHODS: Colony formation assay, cell cycle analysis, hoechst 33342 staining assay, et.al were used to detect the inhibitory effect of AE on cervical cancer cells. Meanwhile, flow cytometry, western blotting, immunoprecipitation, RNA interference and molecular docking were used to analyze the mechanism of AE. KEY FINDINGS: AE exhibited potent cytotoxicity in vitro against HPV-transformed cervical cancer HeLa cell line. AE inhibited the proliferation, arrested cell cycle distribution, and triggered caspase dependent apoptosis in HeLa cells. Further studies revealed AE-induced apoptosis is mediated by the degradation of E6/E7 oncoproteins. Molecular mechanic investigation showed that AE degraded the levels of E6/E7 oncoproteins through reactive oxygen (ROS)-mediated ubiquitin-dependent proteasome system activation, and the increased ROS generation was due to the disruption of the mitochondrial function. SIGNIFICANCE: This present work revealed that this novel marine derived antimycin alkaloid could target the mitochondria and subsequently degrade HPV E6/E7 oncoproteins, and have potential application in the design and development of lead compound for cervical cancer cells, as well as the development for tool compounds to dissect E6/E7 functions.


Assuntos
Antineoplásicos , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Streptomyces , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Neoplasias do Colo do Útero/genética , Streptomyces/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Mitocôndrias/metabolismo
3.
Cell Death Dis ; 13(7): 640, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869062

RESUMO

Our previous studies show that the mitotic phosphorylation of SUMO-specific protease 3 (SENP3) can inhibit its de-SUMOylation activity in G2/M phase of the cell cycle. Inhibition of SENP3 plays a critical role in the correct separation of sister chromatids in mitosis. The mutation of mitotic SENP3 phosphorylation causes chromosome instability and promotes tumorigenesis. In this study, we find that the mutation of mitotic SENP3 phosphorylation in tumor cells can suppress tumor growth in immune-competent mouse model. We further detect an increase of CD8+ T cell infiltration in the tumors, which is essential for the anti-tumor effect in immune-competent mouse model. Moreover, we find that mitotic SENP3 activation increases micronuclei formation, which can activate cGAS signaling-dependent innate immune response. We confirmed that cGAS signaling mediates the mitotic SENP3 activation-induced anti-tumor immunity. We further show that p53 responding to DNA damage activates mitotic SENP3 by inhibiting phosphorylation, and further increases cellular senescence as well as the related innate immune response in tumor cells. Furthermore, TCGA database demonstrates that the SENP3 expression positively correlates with the induction of innate immune response as well as the survival of the p53 mutant pancreatic cancer patients. Together, these data reveal that mitotic SENP3 activation in tumor cells can promote host anti-tumor immune response by coupling with cGAS signaling.


Assuntos
Neoplasias , Peptídeo Hidrolases , Animais , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Camundongos , Neoplasias/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Peptídeo Hidrolases/metabolismo , Sumoilação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Int J Pharm ; 624: 121931, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35750278

RESUMO

Multi-drug resistance (MDR) in breast cancer poses a great threat to chemotherapy. The expression and function of the ATP binding cassette (ABC) transporter are the major cause of MDR. Herein, a linear polyethylene glycol (PEI) conjugated with dicyandiamide, which called polymeric metformin (PolyMet), was successfully synthesized as a simple and biocompatible polymer of metformin. PolyMet showed the potential to reverse MDR by inhibiting the efflux of the substrate of ATP-binding cassette (ABC) transporter from DOX resistant MCF-7 cells (MCF-7/DOX). To test its MDR reversing effect, PolyMet was combined with DOX to treat mice carrying MCF-7/DOX xenografts. In order to decrease the toxicities of DOX and delivery PolyMet and DOX to tumor at the same time, PolyMet was complexed with poly-γ-glutamic acid-doxorubicin (PGA-DOX) electrostatically at the optimal ratio of 2:3, which were further coated with lipid membrane to form lipid/PolyMet-(PGA-DOX) nanoparticles (LPPD). The particle size of LPPD was 165.8 nm, and the zeta potential was +36.5 mV. LPPD exhibited favorable cytotoxicity and cellular uptake in MCF-7/DOX. Meanwhile, the bioluminescence imaging and immunohistochemical analysis indicated that LPPD effectively conquered DOX-associated MDR by blocking ABC transporters (ABCB1 and ABCC1) via PolyMet. Remarkably, LPPD significantly inhibited the tumor growth and lowered the systemic toxicity in a murine MCF-7/DOX tumor model. This is the first time to reveal that PolyMet can enhance the anti-tumor efficacy of DOX by dampening ABC transporters and activating the AMPK/mTOR pathway, which is a promising strategy for drug-resistant breast cancer therapy.


Assuntos
Neoplasias da Mama , Metformina , Animais , Feminino , Humanos , Camundongos , Trifosfato de Adenosina , Transportadores de Cassetes de Ligação de ATP , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Células MCF-7 , Metformina/farmacologia , Polietilenoglicóis/metabolismo
5.
Cell Rep ; 39(2): 110660, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417703

RESUMO

The metabolic program is altered during macrophage activation and influences macrophage polarization. Glutaminolysis promotes accumulation of α-ketoglutarate (αKG), leading to Jumonji domain-containing protein D3 (Jmjd3)-dependent demethylation at H3K27me3 during M2 polarization of macrophages. However, it remains unclear how αKG accumulation is regulated during M2 polarization of macrophages. This study shows that SENP1-Sirt3 signaling controls glutaminolysis, leading to αKG accumulation during IL-4-stimulated M2 polarization. Activation of the SENP1-Sirt3 axis augments M2 macrophage polarization through the accumulation of αKG via glutaminolysis. We also identify glutamate dehydrogenase 1 (GLUD1) as an acetylated protein in mitochondria. The SENP1-Sirt3 axis deacetylates GLUD1 and increases its activity in glutaminolysis to promote αKG production, leading to M2 polarization of macrophages. Therefore, SENP1-Sirt3 signaling plays a critical role in αKG accumulation via glutaminolysis to promote M2 polarization.


Assuntos
Ativação de Macrófagos , Sirtuína 3 , Ácidos Cetoglutáricos/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Sirtuína 3/metabolismo
6.
Nat Commun ; 12(1): 4371, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272364

RESUMO

Metabolic programming and mitochondrial dynamics along with T cell differentiation affect T cell fate and memory development; however, how to control metabolic reprogramming and mitochondrial dynamics in T cell memory development is unclear. Here, we provide evidence that the SUMO protease SENP1 promotes T cell memory development via Sirt3 deSUMOylation. SENP1-Sirt3 signalling augments the deacetylase activity of Sirt3, promoting both OXPHOS and mitochondrial fusion. Mechanistically, SENP1 activates Sirt3 deacetylase activity in T cell mitochondria, leading to reduction of the acetylation of mitochondrial metalloprotease YME1L1. Consequently, deacetylation of YME1L1 suppresses its activity on OPA1 cleavage to facilitate mitochondrial fusion, which results in T cell survival and promotes T cell memory development. We also show that the glycolytic intermediate fructose-1,6-bisphosphate (FBP) as a negative regulator suppresses AMPK-mediated activation of the SENP1-Sirt3 axis and reduces memory development. Moreover, glucose limitation reduces FBP production and activates AMPK during T cell memory development. These data show that glucose limitation activates AMPK and the subsequent SENP1-Sirt3 signalling for T cell memory development.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD8-Positivos/imunologia , Cisteína Endopeptidases/metabolismo , Memória Imunológica , Mitocôndrias/metabolismo , Sirtuína 3/metabolismo , Linfócitos T/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Acetilação , Aloenxertos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Neoplasias do Colo/imunologia , Frutosedifosfatos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Glucose/deficiência , Memória Imunológica/genética , Metabolômica , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/genética , Sumoilação , Linfócitos T/imunologia
7.
ACS Omega ; 6(16): 10645-10654, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056218

RESUMO

Exploring the mechanism through which berberine (Ber) reverses the multidrug resistance (MDR) of breast cancer is of great importance. Herein, we used the methyl thiazolyl tetrazolium assay to determine the drug resistance and cytotoxicity of Ber and doxorubicin (DOX) alone or in combination on the breast cancer cell line MCF-7/DOXFluc. The results showed that Ber could synergistically enhance the inhibitory effect of DOX on tumor cell proliferation in vitro, and the optimal combination ratio was Ber/DOX = 2:1. Using a luciferase reporter assay system combined with the bioluminescence imaging technology, the efflux kinetics of d-luciferin potassium salt in MCF-7/DOXFluc cells treated with Ber in vivo was investigated. The results showed that Ber could significantly reduce the efflux of d-luciferin potassium salt in MCF-7/DOXFluc cells. In addition, western blot and immunohistochemistry experiments showed that the expression of P-glycoprotein (P-gp/ABCB1) and multidrug resistance protein 1 (MRP1/ABCC1) in MCF-7/DOXFluc cells was downregulated upon Ber treatment. Finally, high-performance liquid chromatography was used to investigate the effect of Ber on DOX tissue distribution in vivo, and the results showed that the uptake of DOX in tumor tissues increased significantly when combined with Ber (P < 0.05). Thus, the results illustrated that Ber can reverse MDR by inhibiting the efflux function of ATP-binding cassette transporters and downregulating their expression levels.

8.
Acta Pharmacol Sin ; 42(2): 199-208, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32759963

RESUMO

Mitophagy is a selective form of autophagy involving the removal of damaged mitochondria via the autophagy-lysosome pathway. PINK1-Parkin-mediated mitophagy is one of the most important mechanisms in cardiovascular disease, cerebral ischemia-reperfusion (I/R) injury, and neurodegenerative diseases. In this study we conducted an image-based screening in YFP-Parkin HeLa cells to discover new mitophagy regulators from natural xanthone compounds. We found that garciesculenxanthone B (GeB), a new xanthone compound from Garcinia esculenta, induced the formation of YFP-Parkin puncta, a well known mitophagy marker. Furthermore, treatment with GeB dose-dependently promoted the degradation of mitochondrial proteins Tom20, Tim23, and MFN1 in YFP-Parkin HeLa cells and SH-SY5Y cells. We revealed that GeB stabilized PINK1 and triggered Parkin translocation to the impaired mitochondria to induce mitophagy, and these effects were abolished by knockdown of PINK1. Finally, in vivo experiments demonstrated that GeB partially rescued ischemia-reperfusion-induced brain injury in mice. Taken together, our findings demonstrate that the natural compound GeB can promote the PINK1-Parkin-mediated mitophagy pathway, which may be implicated in protection against I/R brain injury.


Assuntos
Isquemia Encefálica/prevenção & controle , Garcinia/química , Traumatismo por Reperfusão/prevenção & controle , Xantonas/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Xantonas/administração & dosagem , Xantonas/isolamento & purificação
9.
Mediators Inflamm ; 2020: 8528901, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33100904

RESUMO

Mycobacterium tuberculosis (Mtb) remains a great threat to global health, killing more people than any other single infectious agent and causing uncontrollable inflammation in the host. Poorly controlled inflammatory processes can be deleterious and result in immune exhaustion. The current tuberculosis (TB) control is facing the challenge of drugs deficiency, especially in the context of increasingly multidrug resistant (MDR) TB. Under this circumstance, alternative host-directed therapy (HDT) emerges timely which can be exploited to improve the efficacy of TB treatment and disease prognosis by targeting the host. Here, we established the in vitro infection model of Mtb macrophages with H37Ra strain to seek effective anti-TB active agent. The present study showed that Guttiferone K, isolated from Garcinia yunnanensis, could significantly inhibit Mtb-induced inflammation in RAW264.7 and primary peritoneal macrophages. It was evidenced by the decreased production of inflammatory mediators, including interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Further studies with immunoblotting and immunofluorescence revealed that Guttiferone K obviously inhibits the nuclear factor-kappa B (NF-κB) both in RAW264.7 and primary peritoneal macrophages relying on the TLR/IRAK-1 pathway. Guttiferone K could also suppress the NLRP3 inflammasome activity and induce autophagy by inhibiting the protein kinase B (p-Akt) and mammalian target of rapamycin (mTOR) phosphorylation at Ser473 and Ser2448 in both cell lines. Thus, Guttiferone K possesses significant anti-inflammatory effect, alleviating Mtb-induced inflammation with an underlying mechanism that targeting on the TLR/IRAK-1 pathway and inhibiting the downstream NF-κB and Akt/mTOR signaling pathways. Together, Guttiferone K can be an anti-inflammatory agent candidate for the design of new adjunct HDT drugs fighting against tuberculosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzofenonas/uso terapêutico , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Feminino , Imunoprecipitação , Camundongos , Células RAW 264.7
10.
FASEB J ; 34(6): 7387-7403, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32283574

RESUMO

Colorectal cancer (CRC) is the third most common solid tumor worldwide and has shown resistance to several immunotherapies, particularly immune checkpoint blockade therapy, which is effective in many other types of cancer. Our previous studies indicated that the active fraction of Garcinia yunnanensis (YTE-17), had potent anticancer activities by regulating multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of CRC is limited. This study tested the effects of YTE-17 on colon cancer development in vivo by using two murine models: the carcigenic azoxymethane/dextran sulfate sodium (AOM/DSS)-induced CRC model and a genetically induced model using ApcMin/+ mice. Here, the tumor load, tumor number, histology, and even some oncogenes were used to evaluate the effect of YTE-17. The intragastric administration of YTE-17 for 12 weeks significantly decreased CRC incidence, tumor number and size, immunity, and some tumor-associated macrophage (TAM) markers, including CD206, Arg-1, IL-10, and TGF-ß. Importantly, the macrophages depletion by clodronate (CEL) also played a role in reducing the tumor burden and inhibiting tumor development, which were not affected by YTE-17 in the ApcMin/+ mice. Moreover, the YTE-17 treatment attenuated CRC cell growth in a co-culture system in the presence of macrophages. Consistently, YTE-17 effectively reduced the tumor burden and macrophage infiltration and enhanced immunity in the AOM/DSS and ApcMin/+ colon tumor models. Altogether, we demonstrate that macrophages in the microenvironment may contribute to the development and progression of CRC cells and propose YTE-17 as a new potential drug option for the treatment of CRC.


Assuntos
Polaridade Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Garcinia/química , Macrófagos/efeitos dos fármacos , Preparações de Plantas/farmacologia , Animais , Antineoplásicos/farmacologia , Azoximetano/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sulfato de Dextrana/farmacologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Preparações de Plantas/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
11.
J Ethnopharmacol ; 253: 112645, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32045684

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Coreopsis tinctoria Nutt. flower (CTF) has been used traditionally in China for treating hypertension and diabetes as well as reducing body weight and blood fat. However, the vascular protection effect of the CTF has not been studied to date. AIM OF THE STUDY: This study aimed to screen and identify bioactive fractions from the CTF with a diabetic endothelial protection effect and to clarify the underlying mechanism. MATERIALS AND METHODS: The vascular protection effect of Fraction A was studied in high-fat diet and streptozocin-induced diabetic models. The endothelial protection effect of Fraction A-2 was further studied in an in vitro vascular endothelial dysfunction model induced by high glucose. In a high glucose-induced human umbilical vein endothelial cell (HUVEC) model, Fractions A-2-2 and A-2-3 were screened, and their detailed mechanisms of endothelial protection were studied. Liquid chromatography mass spectrometry (LC-MS) was used to identify the main components in Fractions A-2-2 and A-2-3. RESULTS: Fraction A treatment significantly improved the endothelium-dependent vasodilation of the mesenteric artery induced by acetylcholine in diabetic rats. The maximum relaxation was 79.82 ± 2.45% in the control group, 64.36 ± 9.81% in the model group, and 91.87 ± 7.38% in the Fraction A treatment group (P < 0.01). Fraction A treatment also decreased rat tail pressure compared with the model group at the 12th week. The systolic blood pressure was 152.7 5 ± 16.99 mmHg in the control group, 188.50 ± 5.94 mmHg in the model group, and 172.60 ± 14.31 mmHg in the Fraction A treatment group (P < 0.05). The mean blood pressure was 128.50 ± 13.79 mmHg in the control group, 157.00 ± 6.06 mmHg in the model group, and 144.80 ± 11.97 mmHg in the Fraction A treatment group (P < 0.05). In an in vitro vascular endothelium-dependent vasodilation dysfunction model induced by high glucose, Fraction A-2 improved the vasodilation of the mesenteric artery. The maximum relaxation was 82.15 ± 16.24% in the control group, 73.29 ± 14.25% in the model group, and 79.62 ± 13.89% in the Fraction A-2 treatment group (P < 0.05). In a high glucose-induced HUVEC model, Fraction A-2-2 and Fraction A-2-3 upregulated the expression of IRS-1, Akt, and eNOS and increased the levels of p-IRS-1Ser307, p-Akt Ser473, and p-eNOSSer1177 and also decreased the expression of NOX4, TNF-α, IL-6, sVCAM, sICAM, and NF-κB (P < 0.01). With the intervention of AG490 and LY294002, the above effects of Fraction A-2-2 and Fraction A-2-3 were inhibited (P < 0.01). LC-MS data showed that in Fraction A-2-2 and Fraction A-2-3, there were 10 main components: flavanocorepsin; polyphenolic; flavanomarein; isochlorogenic acid A; dicaffeoylquinic acid; coreopsin; marein; coreopsin; luteolin-7-O-glucoside; and 3',5,5',7-tetrahydroxyflavanone-O-hexoside. CONCLUSION: The protective effect of the CTF on diabetic endothelial dysfunction may be due to its effect on the JAK2/IRS-1/PI3K/Akt/eNOS pathway and the related oxidative stress and inflammation. The results strongly suggested that Fraction A-2-2 and Fraction A-2-3 were the active fractions from the CTF, and the CTF might be a potential option for the prevention of vascular complications in diabetes.


Assuntos
Coreopsis , Diabetes Mellitus Experimental/tratamento farmacológico , Flores/química , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
12.
Acta Pharmacol Sin ; 41(1): 82-92, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31371781

RESUMO

Metastasis causes the main lethality in esophageal cancer patient. Garcinol, a natural compound extracted from Gambogic genera, is a histone acetyltransferase (HAT) inhibitor that has shown anticancer activities such as cell cycle arrest and apoptosis induction. In this study, we investigated the effects of garcinol on the metastasis of esophageal cancer in vitro and in vivo. We found that garcinol (5-15 µM) dose-dependently inhibited the migration and invasion of human esophageal cancer cell lines KYSE150 and KYSE450 in wound healing, transwell migration, and Matrigel invasion assays. Furthermore, garcinol treatment dose-dependently decreased the protein levels of p300/CBP (transcriptional cofactors and HATs) and p-Smad2/3 expression in the nucleus, thus impeding tumor cell proliferation and metastasis. Knockdown of p300 could inhibit cell metastasis, but CBP knockdown did not affect the cell mobility. It has been reported that TGF-ß1 stimulated the phosphorylation of Smad2/3, which directly interact with p300/CBP in the nucleus, and upregulating HAT activity of p300. We showed that garcinol treatment dose-dependently suppressed TGF-ß1-activated Smad and non-Smad pathway, inhibiting esophageal cancer cell metastasis. In a tail vein injection pulmonary metastasis mouse model, intraperitoneal administration of garcinol (20 mg/kg) or 5-FU (20 mg/kg) significantly decreased the number of lung tumor nodules and the expression levels of Ki-67, p300, and p-Smad2/3 in lung tissues. In conclusion, our study demonstrates that garcinol inhibits esophageal cancer metastasis in vitro and in vivo, which might be related to the suppression of p300 and TGF-ß1 signaling pathways, suggesting the therapeutic potential of Garcinol for metastatic tumors.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteína p300 Associada a E1A/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Garcinia/química , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteína p300 Associada a E1A/deficiência , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Terpenos/química , Terpenos/isolamento & purificação , Células Tumorais Cultivadas , Cicatrização/efeitos dos fármacos
13.
PLoS Pathog ; 15(12): e1008174, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830143

RESUMO

Primary effusion lymphoma (PEL) is an aggressive B-cell malignancy without effective treatment, and caused by the infection of Kaposi's sarcoma-associated herpesvirus (KSHV), predominantly in its latent form. Previously we showed that the SUMO2-interacting motif within the viral latency-associated nuclear antigen (LANASIM) is essential for establishment and maintenance of KSHV latency. Here, we developed a luciferase based live-cell reporter system to screen inhibitors selectively targeting the interaction between LANASIM and SUMO2. Cambogin, a bioactive natural product isolated from the Garcinia genus (a traditional herbal medicine used for cancer treatment), was obtained from the reporter system screening to efficiently inhibit the association of SUMO2 with LANASIM, in turn reducing the viral episome DNA copy number for establishment and maintenance of KSHV latent infection at a low concentration (nM). Importantly, Cambogin treatments not only specifically inhibited proliferation of KSHV-latently infected cells in vitro, but also induced regression of PEL tumors in a xenograft mouse model. This study has identified Cambogin as a novel therapeutic agent for treating PEL as well as eliminating persistent infection of oncogenic herpesvirus.


Assuntos
Antineoplásicos/farmacologia , Linfoma de Efusão Primária/virologia , Terpenos/farmacologia , Latência Viral/efeitos dos fármacos , Animais , Antígenos Virais/efeitos dos fármacos , Antígenos Virais/metabolismo , Células HEK293 , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8 , Humanos , Camundongos , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Extratos Vegetais/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/efeitos dos fármacos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Front Pharmacol ; 10: 1281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736758

RESUMO

Introduction: Crocus sativus (saffron) is widely used in China, Iran, and India for dyeing and as a food additive and medicinal plant. Safranal, as one of the main constituents of saffron, is responsible for its aroma and has been reported to have anticancer, antioxidant, and anti-inflammation properties. Objective: In this study, we investigated the anti-inflammatory effects of Safranal in RAW264.7 cells, bone marrow-derived macrophages (BMDMs), and dextran sulfate sodium (DSS)-induced colitis mice. Methods: Safranal toxicity was determined using an MTT assay. We evaluated the inhibitory effect of nitric oxide (NO) and levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW264.7 cells and BMDMs. We assessed the inhibitory effect of pro-inflammatory cytokines, and the mRNA expressions of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), classical inflammatory pathways (MAPK and NF-κB), and the nuclear translocation factors AP-1 and NF-κB p65 were investigated. The in vivo anti-inflammatory effects of Safranal were assessed in a DSS-induced colitis model. DSS3.5% was used to induce colitis in mice with or without Safranal for 7 days; weight and disease activity index (DAI) were recorded daily. At the end of the experiment, the colon, mesenteric lymph nodes (MLNs), and spleen were collected for flow cytometry, ELISA, and Western blot analysis. Results: Safranal suppressed NO production, iNOS, and COX-2 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and BMDMs. Safranal decreased the production and mRNA expression of IL-6 and TNF-α in the RAW264.7 cell line and inhibited the phosphorylation and nuclear translocation of components of the MAPK and NF-κB pathways. Safranal alleviated clinical symptoms in the DSS-induced colitis model, and colon histology showed decreased severity of inflammation, depth of inflammatory involvement, and crypt damage. Immunohistochemical staining and flow cytometry showed reduced macrophage infiltration in colonic tissues and macrophage numbers in MLNs and the spleen. The levels of colonic IL-6 and TNF-α also decreased in Safranal-treated colitis mice. This study elucidates the anti-inflammation activity of Safranal, which may be a candidate for inflammatory bowel syndrome (IBD) therapy.

15.
Biochem Pharmacol ; 170: 113646, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545974

RESUMO

Andrographolide (Andro), a well-known labdane diterpenoid of Andrographis paniculata, has been reported to have anti-inflammatory effects in various inflammatory disease models. Despite ongoing efforts to elucidate the anti-inflammatory mechanism of Andro, its specific mechanism is not entirely clear. In this study, we confirmed the inhibitory effect of Andro on inflammatory activity and studied its mechanism in depth to find potential anti-inflammatory targets of Andro using lipopolysaccharide (LPS)-induced macrophages in vitro and a dextran sulfate sodium (DSS)-induced mouse model of acute colitis in vivo. We found that Andro significantly reduced proinflammatory cytokines by suppressing nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and their upstream signaling pathways and activating the AMP activated protein kinase (AMPK) pathway in LPS-induced macrophages. Interestingly, Andro could not regulate the activation of the AMPK/NF-κB/MAPK pathway nor inhibit NF-κB and activator protein 1 (AP-1) nuclear translocation and nitric oxide (NO) production following knockdown of AMPKα2. Moreover, Andro attenuated DSS-induced intestinal barrier dysfunction and inflammation by suppressing the NF-κB and MAPK pathways in colon tissues while activating the AMPK pathway. In conclusion, our study demonstrates that Andro effectively inhibits LPS-induced inflammatory responses via AMPK activation in macrophages, whereby Andro can ameliorate DSS-induced acute colitis in mice.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Colite/metabolismo , Diterpenos/uso terapêutico , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Colite/tratamento farmacológico , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Células U937
16.
Pharmacol Res ; 147: 104328, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288080

RESUMO

A global transcriptional regulator, MgrA, was previously identified as a key determinant of virulence in Staphylococcus aureus. An 80% EtOH extract of Uncaria gambier was found to attenuate the virulence of S. aureus via its effects on MgrA. Using bioassay-guided fractionation, a polyphenolic polymer, uncariitannin, was found to be the main bioactive constituent of the extract, and its structure was characterized using spectral and chemical analysis. The molecular weight and polydispersity of uncariitannin were determined by gel permeation chromatography-refractive index-light scattering analysis. An electrophoretic mobility shift assay showed that uncariitannin could effectively inhibit the interaction of MgrA with DNA in a dose-dependent manner. Treatment with uncariitannin could decrease the mRNA and protein levels of Hla in both the S. aureus Newman and USA300 LAC strains. Further analysis of Hla expression levels in the Newman ΔmgrA and Newman ΔmgrA/pYJ335-mgrA strains indicated that uncariitannin altered Hla expression primarily in an MgrA-dependent manner. A mouse model of infection indicated that uncariitannin could attenuate MRSA virulence. In conclusion, uncariitannin may be a potential candidate for further development as an antivirulence agent for the treatment of S. aureus infection.


Assuntos
Antibacterianos , Polímeros , Polifenóis , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Uncaria , Virulência/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Feminino , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Polímeros/farmacologia , Polímeros/uso terapêutico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Baço/efeitos dos fármacos , Baço/patologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade
17.
Cancer Res ; 79(15): 3891-3902, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31186231

RESUMO

Myeloid-derived suppressor cells (MDSC) can suppress immunity and promote tumorigenesis, and their abundance is associated with poor prognosis. In this study, we show that SUMO1/sentrin-specific peptidase 1 (SENP1) regulates the development and function of MDSC. SENP1 deficiency in myeloid cells promoted MDSC expansion in bone marrow, spleen, and other organs. Senp1-/- MDSC showed stronger immunosuppressive activity than Senp1+/+ MDSC; we observed no defects in the differentiation of myeloid precursor cell in Senp1-/- mice. Mechanistically, SENP1-mediated regulation of MDSC was dependent on STAT3 signaling. We identified CD45 as a specific STAT3 phosphatase in MDSC. CD45 was SUMOylated in MDSC and SENP1 could deconjugate SUMOylated CD45. In Senp1-/- MDSC, CD45 was highly SUMOylated, which reduced its phosphatase activity toward STAT3, leading to STAT3-mediated MDSC development and function. These results reveal a suppressive function of SENP1 in modulating MDSC expansion and function via CD45-STAT3 signaling axis. SIGNIFICANCE: These findings show that increased SUMOylation of CD45 via loss of SENP1 suppresses CD45-mediated dephosphorylation of STAT3, which promotes MDSC development and function, leading to tumorigenesis.


Assuntos
Cisteína Endopeptidases/metabolismo , Células Supressoras Mieloides/metabolismo , Animais , Carcinogênese , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/deficiência , Feminino , Células HEK293 , Humanos , Antígenos Comuns de Leucócito/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/patologia , Fator de Transcrição STAT3/metabolismo , Sumoilação
18.
Org Lett ; 21(5): 1534-1537, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30775925

RESUMO

Garsubelone A (1), the first dimeric polycyclic polyprenylated acylphloroglucinols type metabolite featuring a complicated 6/6/6/6/6/6/6 heptacyclic architecture containing 10 stereogenic centers, was isolated from Garcinia subelliptica. Biogenetically, this compound was constructed by the plausible monomeric precursor, garsubelone B (2) and secohyperforin, via a key Diels-Alder cycloaddition to form an unique 2-oxabicyclo[3.3.1]nonane core. Their structures and absolute configurations were determined by comprehensive spectroscopic and X-ray diffraction techniques. The cytotoxic activities of these isolates were also evaluated.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Garcinia/química , Floroglucinol/análogos & derivados , Compostos Policíclicos/química , Compostos Policíclicos/metabolismo , Terpenos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Floroglucinol/química , Compostos Policíclicos/isolamento & purificação , Difração de Raios X
19.
Planta Med ; 85(6): 444-452, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30650454

RESUMO

Six new prenylated xanthones (1: -6: ) and seventeen known xanthones were isolated from extracts of Garcinia bracteata leaves. Their structures were determined by extensive NMR and MS spectroscopic data analysis. The inhibitory activities of the isolates were assayed on HeLa, A549, PC-3, HT-29, and WPMY-1 cell lines. Compounds 1: and 15: -17: showed moderate inhibitory effects on tumor cell growth, with IC50s ranging from 3.7 to 14.7 µM.


Assuntos
Citotoxinas/isolamento & purificação , Garcinia/química , Folhas de Planta/química , Xantonas/isolamento & purificação , Linhagem Celular Tumoral/efeitos dos fármacos , Citotoxinas/farmacologia , Células HeLa/efeitos dos fármacos , Humanos , Células PC-3/efeitos dos fármacos , Relação Estrutura-Atividade , Xantonas/farmacologia
20.
Front Pharmacol ; 10: 1561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009962

RESUMO

Macrophages-involved inflammation is considered to induce the damage in various diseases. Herein, novel therapeutics inhibiting over-activation of macrophages could prove an effective strategy to prevent inflammation-related diseases. Gaudichaudione H (GH), which is a natural small molecular compound isolated from Garcinia oligantha Merr. (Clusiaceae) has previously been demonstrated its anti-cancer effects on several cancer cell lines. However, no report has been published about the anti-inflammatory effect of GH to date. This study aims to examine the anti-inflammatory effects and potential molecular mechanism of GH, and provide new insights toward the treatment of inflammation. GH inhibited nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, cytokine interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production, and messenger RNA (mRNA) expression to attenuate inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 cells or stimulated bone marrow-derived macrophages (BMDMs). GH inhibited nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, the nuclear translocation of transcription factors NF-κB and activator protein 1 (AP-1), as well as upstream signaling of the toll-like receptor 4 (TLR4)-myeloid differentiation primary response 88 (MyD88) pathway in stimulated macrophages. Furthermore, the result of the intracellular signaling array showed that the phosphorylation of adenosine 5'-monophosphate-activated protein kinase-α (AMPKα), proline-rich Akt substrate of 40 kDa (PRAS40), and p38 could be down regulated by GH in BMDMs, indicating that the mechanism by which GH inhibited inflammation may be also associated with the energy metabolism pathway, PRAS40-mediated NF-κB pathway, cell proliferation, apoptosis, and autophagy, etc. In addition, GH alleviated dextran sodium sulfate (DSS)-induced colitis in mice by ameliorating weight loss, stool consistency change, blood in the stool, and colon shortening. GH decreased the protein and mRNA levels of IL-6 and TNF-α, iNOS and COX-2 mRNA expression, the activation of NF-κB and MAPK pathways, the phosphorylation of AMPKα and PRAS40, histological damage, and infiltration of macrophages in the colons of mice with DSS-induced colitis. Taken together, our results support that GH exerts the anti-inflammatory effects in macrophages in vitro through regulation of NF-κB and MAPK pathways, and DSS-induced colitis mouse model in vivo. These findings suggest that GH may be a promising candidate in treating macrophage-related inflammatory disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA