Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 30(25): 3155-3165, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39006389

RESUMO

BACKGROUND: Due to similar clinical manifestations and imaging signs, differential diagnosis of primary intestinal lymphoma (PIL) and Crohn's disease (CD) is a challenge in clinical practice. AIM: To investigate the ability of radiomics combined with machine learning methods to differentiate PIL from CD. METHODS: We collected contrast-enhanced computed tomography (CECT) and clinical data from 120 patients form center 1. A total of 944 features were extracted single-phase images of CECT scans. Using the last absolute shrinkage and selection operator model, the best predictive radiographic features and clinical indications were screened. Data from 54 patients were collected at center 2 as an external validation set to verify the robustness of the model. The area under the receiver operating characteristic curve, accuracy, sensitivity and specificity were used for evaluation. RESULTS: A total of five machine learning models were built to distinguish PIL from CD. Based on the results from the test group, most models performed well with a large area under the curve (AUC) (> 0.850) and high accuracy (> 0.900). The combined clinical and radiomics model (AUC = 1.000, accuracy = 1.000) was the best model among all models. CONCLUSION: Based on machine learning, a model combining clinical data with radiologic features was constructed that can effectively differentiate PIL from CD.


Assuntos
Doença de Crohn , Neoplasias Intestinais , Aprendizado de Máquina , Curva ROC , Tomografia Computadorizada por Raios X , Humanos , Doença de Crohn/diagnóstico por imagem , Feminino , Diagnóstico Diferencial , Masculino , Pessoa de Meia-Idade , Adulto , Neoplasias Intestinais/diagnóstico por imagem , Neoplasias Intestinais/patologia , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Linfoma/diagnóstico por imagem , Linfoma/patologia , Idoso , Sensibilidade e Especificidade , Meios de Contraste/administração & dosagem , Adulto Jovem , Radiômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA