Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(4): 5486-5497, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33491443

RESUMO

Flexible paper-based sensors may be applied in numerous fields, but this requires addressing their limitations related to poor thermal and water resistance, which results in low service life. Herein, we report a paper-based composite sensor composed of carboxylic carbon nanotubes (CCNTs) and poly-m-phenyleneisophthalamide (PMIA), fabricated by a facile papermaking process. The CCNT/PMIA composite sensor exhibits an ability to detect pressures generated by various human movements, attributed to the sensor's conductive network and the characteristic "mud-brick" microstructure. The sensor exhibits the capability to monitor human motions, such as bending of finger joints and elbow joints, speaking, blinking, and smiling, as well as temperature variations in the range of 30-90 °C. Such a capability to sensitively detect pressure can be realized at different applied frequencies, gradient sagittas, and multiple twists with a short response time (104 ms) even after being soaked in water, acid, and alkali solutions. Moreover, the sensor demonstrates excellent mechanical properties and hence can be folded up to 6000 times without failure, can bear 5 kg of load without breaking, and can be cycled 2000 times without energy loss, providing a great possibility for a long sensing life. Additionally, the composite sensor shows exceptional Joule heating performance, which can reach 242 °C in less than 15 s even when powered by a low input voltage (25 V). From the perspective of industrialization, low-cost and large-scale roll-to-roll production of the paper-based sensor can be achieved, with a formed length of thousands of meters, showing great potential for future industrial applications as a wearable smart sensor for detecting pressure and temperature, with the capability of electric heating.


Assuntos
Nanotubos de Carbono/química , Papel , Fenilenodiaminas/química , Ácidos Ftálicos/química , Polímeros/química , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Condutividade Elétrica , Humanos , Monitorização Fisiológica/instrumentação , Movimento (Física) , Nanotubos de Carbono/ultraestrutura
2.
J Colloid Interface Sci ; 549: 201-211, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039456

RESUMO

Oil-in-oil emulsions are ideal systems for water-sensitive reactions such as polymerizations and catalytic reactions, which has received extensive attention in recent years. The application of oil-in-oil emulsions has been developed slowly due to the limited types of surfactants and complicated synthesis process. Herein, we proposed a simple method to prepare poly(amide-thioether)-based surfactant for oil-in-oil emulsions via taking advantage of single-pot multicomponent and click characters of thiolactone chemistry. Using a combination of alkyl amine and acrylamide thiolactone, the aminolysis of thiolctone occurred first, generating thiol group in-situ, and then the generated thiol group would sequentially react with the double bonds of acrylamide to form polythioether in the presence of amine. The hydrophobicity of the surfactant could be effectively adjusted by the chain length of the alkyl amine and thus this polymer could serve as a promising surfactant for oil-in-oil emulsion. Notably, the emulsion types could be switched by changing the chain length of the alkyl amine. In addition, the effects of surfactant loading, volume ratio of oil phases, oil types on the size and stability of oil-in-oil emulsions were further investigated. It was demonstrated that the oil-in-oil emulsion stabilized by poly(amide-thioether)s kept stable after more than five months. Besides, we preliminarily explored the application of the oil-in-oil emulsion to prepare closed cell foam and porous particles via photo-initiated thiol-ene polymerization. It is believed that this super-stable oil-in-oil emulsion could offer more possibilities for highly potential water-sensitive systems.

3.
Macromol Rapid Commun ; 40(17): e1800909, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30860311

RESUMO

The dynamic nature of supramolecules makes them useful in the fields of smart devices. The combination of multiple dynamic interactions in one material may bring some enhanced properties in mechanical property, self-healing property, or recyclability. Thus, it is significantly meaningful to design new materials with multi-dynamic bonds and clarify their bonding mechanisms. Here, a novel three-armed polymer based on benzene-1,3,5-tricarboxamide (BTA) is developed and the polymer could be further complexed by metal ions to form dynamic zinc-imidazole interactions. In this system, BTA is located in the center, and the ligand-functionalized monomer is copolymerized with n-butyl acrylate to form three chains. This is the first time BTA is introduced to a self-healing system to endow the polymer with assembly and self-healing properties. The composition, chemical structure, assembly behavior, mechanical properties, and self-healing properties of the polymer are investigated. It is revealed that the assembly behavior of the polymer depends on the BTA contents and time. The mechanical property can be easily tuned by ligand/metal ratio and is significantly adjusted by the polymer chain length and environment humidity. Long polymer chains not only contribute to good mechanical property but also promote the self-healing process due to the effective physical entanglement.


Assuntos
Benzamidas/química , Metais/química , Metais/metabolismo , Polímeros/química , Polímeros/metabolismo , Ligação de Hidrogênio , Ligantes , Polimerização
4.
Carbohydr Polym ; 203: 415-422, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318230

RESUMO

A biodegradable cellulose-based air filter (Ag-MOFs@CNF@ZIF-8) with multi-layer structure was fabricated by in situ generation of double-component metal-organic frameworks (MOFs) and reinforcement of cellulose nanofiber (CNF). It exhibits good filtration performance, gas adsorption, antibacterial activity and mechanical property. The presence of MOFs could enhance the interaction between the filter and particulate matter (PM) and significantly improve the specific surface area of the composite filter. Thus, the filtration efficiency of the composite filter could reach 94.3% for PM2.5 and the nitrogen adsorption capacity increased to 109 cm3 g-1. Furthermore, the Ag-MOFs@CNF@ZIF-8 filter exhibited excellent antibacterial activity against Escherichia coli with an inhibition zone diameter of 18.1 mm. The compressive strength of the composite filter could be up to 501 kPa, approximately 3.8 times higher than that of pure cellulose filter. Herein, this composite filter has a great application potential in PM2.5 removal, toxic gas adsorption and healthcare fields.

5.
Artif Organs ; 36(1): 86-93, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21819437

RESUMO

Given the xenogeneic immune reaction relevant to the molecular weight cutoff of the membrane of a bioartificial liver (BAL) system, we investigated the influence of membrane molecular weight cutoff in our BAL system in this study. Acute liver failure in beagles was induced by d-galactosamine administration. Eight beagles were divided into two groups by the membrane molecular weight cutoff of the plasma component separator. Group 1 beagles were treated with BAL containing 200 kDa retention rating membrane. Group 2 beagles were treated with BAL containing 1200 kDa retention rating membrane. Each group underwent two 6-h BAL treatments that were performed on day 1 and day 21. The hemodynamic and hematologic response, humoral immune responses, and cytotoxic immune response to BAL therapy were studied before and after treatments. All beagles remained hemodynamically and hematologically stable during BAL treatments. BAL treatment was associated with a significant decline in levels of complement; however, a longer time of level maintenance was observed in Group 2. Group 2 beagles experienced a significant increase in levels of IgG and IgM after two BAL treatments. Significant levels of canine proteins were detected in BAL medium from Group 2; only trace levels of canine proteins were detected in BAL medium from Group 1. The posttreatment viability of co-culture cells in Group 2 was lower compared with Group 1, and the viability of co-culture cells after treatments was associated with deposition of canine proteins on the cells. Xenogeneic immune response was influenced by membrane molecular weight cutoff in the BAL.


Assuntos
Reatores Biológicos , Falência Hepática Aguda/terapia , Fígado Artificial , Membranas Artificiais , Animais , Sobrevivência Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Cães , Desenho de Equipamento , Galactosamina/toxicidade , Hemodinâmica , Hepatócitos/citologia , Imunidade Humoral , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/imunologia , Células-Tronco Mesenquimais/citologia , Peso Molecular , Suínos
6.
Am J Med Sci ; 343(6): 429-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22008783

RESUMO

INTRODUCTION: To study and evaluate the immunosafety of our newly developed multilayer flat-plate bioartificial liver (BAL) in treatment of canines with acute liver failure. METHODS: Fresh porcine hepatocytes and bone marrow mesenchymal stem cells were cocultured in new BAL. Ten canine models with acute liver failure were set up through D-galactosamine administration; 24 hours after administration, the beagles were randomly allocated to a 6-hour treatment with the BAL. The beagles were divided into 2 groups by treatment times. Group 1 beagles (n = 5) received a single BAL treatment. Group 2 beagles (n = 5) received 3 BAL treatments. The hemodynamic, hematologic response and humoral immune responses to BAL therapy were studied before and after treatments. RESULTS: All beagles remained hemodynamically and hematologically stable during BAL treatments. The levels of IgG and IgM were similar before and after treatment after a single treatment. In addition, the level of CH50 in group 1 slightly decreased after the initiation of BAL treatment, and then the level recovered to baseline quickly after treatments. Time-course changes of the levels of antibodies and CH50 after 3 treatments in group 2 were similar to group 1. Only trace levels of IgG were detected in BAL medium after treatments. CONCLUSION: The multilayer flat-plate BAL showed a great immunosafety in the treatment of canines with acute liver failure and exhibited a good prospect of its use in clinic.


Assuntos
Hepatócitos/imunologia , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/cirurgia , Fígado Artificial , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Técnicas de Cocultura , Modelos Animais de Doenças , Cães , Desenho de Equipamento/normas , Hepatócitos/citologia , Falência Hepática Aguda/patologia , Fígado Artificial/efeitos adversos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Distribuição Aleatória , Suínos
7.
Artif Organs ; 35(3): E40-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21371057

RESUMO

Immunoisolation using semipermeable membranes has been incorporated into bioartificial liver (BAL) devices to separate cellular components of the recipient's immune system from the cells within the BAL device. This study was designed to explore the influence of membrane molecular weight cutoff on performance of the multilayer radial-flow BAL using porcine hepatocytes cocultured with mesenchymal stem cells. In this study, healthy beagles underwent 6-h treatment with a BAL containing membrane with 200 kDa retention rating or 1200 kDa retention rating. Functional markers of BAL performance were monitored before and after treatment, as well as cytotoxic immune response to BAL therapy. The results showed that hepatocyte performance levels such as albumin secretion, urea synthesis, and viability were all significantly higher in 200 kDa retention rating group compared with the 1200 kDa retention rating group after treatment (P < 0.05). Significant levels of canine proteins were detected in BAL medium from the 1200 kDa retention rating group. Fluorescence microscopy further verified that heavy deposition of canine IgG, IgM, and complement (C3) on coculture cells was obtained after BAL treatment in the 1200 kDa retention rating group. However, only trace deposits of canine immunoproteins were observed on coculture cells obtained from BAL in the 200 kDa retention rating group. Small membrane molecular weight cutoff of the BAL could reduce the transfer of xenoreactive antibodies into the BAL medium and improve the performance of the BAL.


Assuntos
Hepatócitos/citologia , Fígado Artificial , Membranas Artificiais , Células-Tronco Mesenquimais/citologia , Animais , Anticorpos Heterófilos/imunologia , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Cães , Desenho de Equipamento , Hepatócitos/imunologia , Células-Tronco Mesenquimais/imunologia , Peso Molecular , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA